When sudden changes occurs in the body. lack of blood flow in the brain
Answer:
9.2
Explanation:
Let's do an equilibrium chart of this reaction:
2NO(g) + O₂(g) ⇄ 2NO₂(g)
4.9 atm 5.1 atm 0 Initial
-2x -x +2x Reacts (stoichiometry is 2:1:2)
4.9-2x 5.1-x 2x Equilibrium
The mole fraction of NO₂ (y) can be calculated by the Raoult's law, that states that the mole fraction is the partial pressure divided by the total pressure:
y = 2x/(4.9 - 2x + 5.1 -x + 2x)
0.52 = 2x/(10 - x)
2x = 5.2 -0.52x
2.52x = 5.2
x = 2.06 atm
Thus, the partial pressure at equilibrium are:
pNO = 4.9 -2*2.06 = 0.78 atm
pO₂ = 5.1 - 2.06 = 3.04 atm
pNO₂ = 2*2.06 = 4.12 atm
Thus, the pressure equilibrium constant Kp is:
Kp = [(pNO₂)²]/[(pNO)²*(pO₂)]
Kp = [(4.12)²]/[(0.78)²*3.04]
Kp = [16.9744]/[1.849536]
Kp = 9.2
<u>Answer:</u> The reaction proceeds in the forward direction
<u>Explanation:</u>
For the given chemical equation:

Relation of
is given by the formula:

where,
= equilibrium constant in terms of partial pressure = ?
= equilibrium constant in terms of concentration = 
R = Gas constant = 
T = temperature = ![35^oC=[35+273]K=308K](https://tex.z-dn.net/?f=35%5EoC%3D%5B35%2B273%5DK%3D308K)
= change in number of moles of gas particles = 
Putting values in above equation, we get:

is the constant of a certain reaction at equilibrium while
is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
The expression of
for above equation follows:

We are given:



Putting values in above equation, we get:

We are given:

There are 3 conditions:
- When
; the reaction is product favored. - When
; the reaction is reactant favored. - When
; the reaction is in equilibrium
As,
, the reaction will be favoring product side.
Hence, the reaction proceeds in the forward direction
Answer:
acids or bases can be tested
by chemical indicators