<u>Answer:</u>
Law used: Combined Gas Law
<u>Explanation:</u>
We are given the following problem:
Carbon dioxide is in a steel tank at 20°C, 10 liters and 1 atm. What is the pressure on the gas when the tank is heated to 100°C?
To solve this, the most appropriate law that can be used it Combined Gas Law, which is the result of combining the Boyle's law, Charles' law, and Gay-Lussac's law together.
A. A group of related objects that do not send out or receive feedback and cannot modify themselves
Explanation:
An open-loop system is a a group of related objects or systems that cannot send out or receive feedback and modify themselves.
- It is a non-feedback system.
- In this system, the output control system has no effect on whatever input that is fed into the system.
- Output and input in such systems are independent of one another.
- The input and output has no control whatever on each other.
learn more:
Computer programs brainly.com/question/9409412
#learnwithBrainly
Answer:
hot air rises because gases expand as they heat up.When air heats up and expands,its density also increases.The warmer,less dense air effectively floats on top of the colder, dense air below it. This creates a buoyant force that causes warmer air to rise.
cold air sinks because it is heavier as its more dense ( because of closely packed molecules) soits harder for them to move and they absorb less energy. Also, gravity pulls on it more strongly.
Hope it helps :)
<u>Answer:</u> The molality of naphthalene solution is 0.499 m
<u>Explanation:</u>
Density is defined as the ratio of mass and volume of a substance.
......(1)
Given values:
Volume of carbon tetrachloride = 500 mL
Density of carbon tetrachloride = 1.60 g/mL
Putting values in equation 1, we get:

Molality is defined as the amount of solute expressed in the number of moles present per kilogram of solvent. The units of molarity are mol/kg. The formula used to calculate molarity:
.....(2)
Given values:
Given mass of naphthalene = 51.2 g
Molar mass of naphthalene = 128.17 g/mol
Mass of solvent = 800 g
Putting values in equation 2, we get:

Hence, the molality of naphthalene solution is 0.499 m