Answer:
THE VOLUME OF THE NITROGEN GAS AT 2.5 MOLES , 1.75 ATM AND 475 K IS 55.64 L
Explanation:
Using the ideal gas equation
PV = nRT
P = 1.75 atm
n = 2.5 moles
T = 475 K
R = 0.082 L atm/mol K
V = unknown
Substituting the variables into the equation we have:
V = nRT / P
V = 2.5 * 0.082 * 475 / 1.75
V = 97.375 / 1.75
V = 55.64 L
The volume of the 2.5 moles of nitrogen gas exerted by 1.75 atm at 475 K is 55.64 L
Sodium. 11
Carbon. 12
Hydrogen 1
Oxygen 2
Fluuorine. 14
Boron. 5
Lithium. 6
Helium 3
Phosphorus 15
Sulfur 6
Answer:
1. not affected by a magnet 1 liquid
2. mostly space 2 solid
3. flows freely but particles still attract 3 proton
4. positively charged particles 4 gas
5. free to move in all space 5 alpha particles
6. negatively charged particles 6 atoms
7. atoms nearly fixed in space 7 gamma ray 8. helium nucleus 8 electron (beta)
The pebbles become smooth and even because of erosion. the waves from the sea rub against the pebbles this is erosion. x
Answer: The correct option is:

Explanation:
In balanced chemical equation , mass of the reactants is always equal to the mass of the products.

This is the balanced equation because on both sides number of sodium and bromine atoms are same.
On the reactant side there are two sodium atoms and two bromine atoms
On the product side there are also two sodium atoms and two bromine atoms in NaBr.
Mass of reactants (here 2Na and
)= Mass of products(here 2NaBr)
2(23u) + 2(79.9u) = 2(23u + 79.9u) = 205 u