Answer:
The molarity of the HCl solution should be 4.04 M
Explanation:
<u>Step 1:</u> Data given
volume of HCl solution = 10.00 mL = 0.01 L
volume of a 1.6 M NaOH solution = 25.24 mL = 0.02524 L
<u>Step 2:</u> The balanced equation
HCl + NaOH → NaCL + H2O
Step 3: Calculate molarity of HCl
n1*C1*V1 = n2*C2*V2
Since the mole ratio for HCl and NaOH is 1:1 we can just write:
C1*V1 =C2*V2
⇒ with C1 : the molarity of HCl = TO BE DETERMINED
⇒ with V1 = the volume og HCl = 10 mL = 0.01 L
⇒ with C2 = The molarity of NaOH = 1.6 M
⇒ with V2 = volume of NaOH = 25.24 mL = 0.02524 L
C1 * 0.01 = 1.6 * 0.02524
C1 = (1.6*0.02524)/0.01
C1 = 4.04M
The molarity of the HCl solution should be 4.04 M
The greatest amount of AB would be produced if the equilibrium constant of the reaction is equal to
. Hence, option D is correct.
<h3>What is an equilibrium constant?</h3>
A number that expresses the relationship between the amounts of products and reactants present at equilibrium in a reversible chemical reaction at a given temperature.
The equilibrium constant expression is a mathematical relationship that shows how the concentrations of the products vary with the concentration of the reactants.
If the value of K is greater than 1, the products in the reaction are favoured. If the value of K is less than 1, the reactants in the reaction are favoured.
Hence, option D is correct.
Learn more about the equilibrium constant here:
brainly.com/question/10038290
#SPJ1
787.57 grams GIVE ME BRAINLIEST
Answer:
it states that the total mass of the products are the same as the total mass of the reactants in a chemical reaction.
Explanation: