<span>85% ethanol | 25% ethanol | 50% ethanol
x | y | 20 gal
use x and y because you don;t know how much she needs.
0.85x | 0.25y | 20(0.5)
85% is 85/100 or 0.85, and you need that much of x, same goes for the 25% and 50% mixtures so now you can make up 2 equations
1) x + y = 20 2) 0.85x + 0.25y= 10 (you get 10 when you multiply 20 by 0.5) now you can solve for x or y using substitution.
first rewrite 1) in terms of x or y: x+ y= 20 ----> y= 20 - x now you can substitute 20- x for y in the second equation.. 0.85x + 0.25y= 10 0.85x + 0.25(20-x)= 10 distribute here..(0.25 * 20 and 0.25 * (-x) ) 0.85x + 5 - 0.25x = 10 combine like terms 0.6x +5 = 10 move the 5 over to the other side 0.6x= 10 -5 0.6x = 5 divide both sides by 0.6 x= 25/3 or 8.3 now you know the amount of x so you can substitue this back into the first equation to find y. 0.85x + 0.25y= 10 0.85(25/3) +0.25y= 10 85/12 + 0.25y= 10 0.25y = 10- 85/12 0.25y= 35/12 y= 35/3 or 11.6 you can check by putting these values into the euations: 1) x+ y= 20 25/3 + 35/3 =20 20= 20 good so far 2) 0.85x + 0.25y= 10 0.85(25/3) + 0.25(35/3)=10 10 = 10
so our values for x and y work
x= 25/3 and y= 35/3</span>
Low because it is not diverse. It is just seed corn.
Answer:
The value of y = 5.1478
Explanation:
The linear equation is an equation obtained when a linear polynomial is equated to zero. When the solution obtained on solving the equation is substituted in the equation in place of the unknown, the equation gets satisfied.
The given equation: 5.3 x 10- (y)(2y) = 0
⇒ 53 - 2y² = 0
⇒ 2y² = 53
⇒ y² = 53 ÷ 2 = 26.5
⇒ y = √26.5 = 5.1478
a. Emma creates a pressure difference allowing the fluid to flow.
Answer:- New pressure is 0.942 atm.
Solution:- The volume of the glass bottle would remain constant here and the pressure will change with the temperature.
Pressure is directly proportional to the kelvin temperature. The equation used here is:

Where,
and
are initial and final temperatures,
and
are initial and final pressures.
= 20.3 + 273.15 = 293.45 K
= -2.0 + 273.15 = 271.15 K
= 1.02 atm
= ?
Let's plug in the values in the equation and solve it for final pressure.


= 0.942 atm
So, the new pressure of the jar is 0.942 atm.