Answer:
220mol.
Explanation:
Water is H2O. Hydrogen gas is H2. Oxygen gas is O2. You have 220mol of O and 460mol of H. O is the limiting reactant. The ratio O:H2O is 1:1. 220*1=220
Answer:
evaporation is most likely to occur on a warm sunny day
Explanation:
Evaporation rates are higher at higher temperatures because as temperature increases, the amount of energy necessary for evaporation decreases. In sunny, warm weather the loss of water by evaporation is greater than in cloudy and cool weather. ... So, sunny, hot, dry, windy conditions produce higher evaporation rates.
Use the Ideal Gas Law to find the moles of gas first.
Be sure to convert T from Celsius to Kelvin by adding 273.
Also I prefer to deal with pressure in atm rather than mmHg, so divide the pressure by 760 to get it in atm.
PV = nRT —> n = PV/RT
P = 547 mmHg = 547/760 atm = 0.720 atm
V = 1.90 L
T = 33°C = 33 + 273 K = 306 K
R = 0.08206 L atm / mol K
n = (0.720 atm)(1.90 L) / (0.08206 L atm / mol K)(306 K) = 0.0545 mol of gas
Now divide grams by mol to get the molecular weight.
3.42 g / 0.0545 mol = 62.8 g/mol
A decomposition reaction should look like
A ------> B +C+...
It has to have only one reactant and several products.
2 NO2 ⟶ 2 O2 + N2
Explanation:
Sodium has 1 electron in its outermost shell, and chlorine has 7 electrons. It is easiest for sodium to lose its electron and form a +1 ion, and for chlorine to gain an electron, forming a -1 ion.
<em>Now ionic bonds areIons are formed by atoms that have non-full outermost electron shells in order to become more like the noble gases in Group 8 of the Periodic Table,</em>
<em>Now ionic bonds areIons are formed by atoms that have non-full outermost electron shells in order to become more like the noble gases in Group 8 of the Periodic Table,Some atoms add electrons to get a full shell, thus becoming a negative ion. Other atoms subtract electrons from their outermost shell, leaving a full </em><em>shell and an overall positive charge..</em>
<em>shell and an overall positive charge..therefore it is an</em> ionic bond