Answer:
winter viscosity grades
Explanation:
The “W”/winter viscosity grades describe the oil's viscosity under cold temperature engine starting conditions. There's a Low Temperature Cranking Viscosity which sets a viscosity requirement at various low temperatures to ensure that the oil isn't too thick so that the starter motor can't crank the engine over.
Answer:

Explanation:
Given that:
The direction of the applied tensile stress =[001]
direction of the slip plane = [
01]
normal to the slip plane = [111]
Now, the first thing to do is to calculate the angle between the tensile stress and the slip by using the formula:
![cos \lambda = \Big [\dfrac{d_1d_2+e_1e_2+f_1f_2}{\sqrt{(d_1^2+e_1^2+f_1^2)+(d_2^2+e_2^2+f_2^2) }} \Big]](https://tex.z-dn.net/?f=cos%20%5Clambda%20%3D%20%5CBig%20%5B%5Cdfrac%7Bd_1d_2%2Be_1e_2%2Bf_1f_2%7D%7B%5Csqrt%7B%28d_1%5E2%2Be_1%5E2%2Bf_1%5E2%29%2B%28d_2%5E2%2Be_2%5E2%2Bf_2%5E2%29%20%7D%7D%20%5CBig%5D)
where;
= directional indices for tensile stress
= slip direction
replacing their values;
i.e
= 0 ,
= 0
= 1 &
= -1 ,
= 0 ,
= 1
![cos \lambda = \Big [\dfrac{(0\times -1)+(0\times 0) + (1\times 1) }{\sqrt{(0^2+0^2+1^2)+((-1)^2+0^2+1^2) }} \Big]](https://tex.z-dn.net/?f=cos%20%5Clambda%20%3D%20%5CBig%20%5B%5Cdfrac%7B%280%5Ctimes%20-1%29%2B%280%5Ctimes%200%29%20%2B%20%281%5Ctimes%201%29%20%7D%7B%5Csqrt%7B%280%5E2%2B0%5E2%2B1%5E2%29%2B%28%28-1%29%5E2%2B0%5E2%2B1%5E2%29%20%7D%7D%20%5CBig%5D)

Also, to find the angle
between the stress [001] & normal slip plane [111]
Then;
![cos \ \phi = \Big [\dfrac{d_1d_3+e_1e_3+f_1f_3}{\sqrt{(d_1^2+e_1^2+f_1^2)+(d_3^2+e_3^2+f_3^2) }} \Big]](https://tex.z-dn.net/?f=cos%20%5C%20%20%5Cphi%20%3D%20%5CBig%20%5B%5Cdfrac%7Bd_1d_3%2Be_1e_3%2Bf_1f_3%7D%7B%5Csqrt%7B%28d_1%5E2%2Be_1%5E2%2Bf_1%5E2%29%2B%28d_3%5E2%2Be_3%5E2%2Bf_3%5E2%29%20%7D%7D%20%5CBig%5D)
replacing their values;
i.e
= 0 ,
= 0
= 1 &
= 1 ,
= 1 ,
= 1
![cos \ \phi= \Big [ \dfrac{ (0 \times 1)+(0 \times 1)+(1 \times 1)} {\sqrt {(0^2+0^2+1^2)+(1^2+1^2 +1^2)} } \Big]](https://tex.z-dn.net/?f=cos%20%5C%20%20%5Cphi%3D%20%5CBig%20%5B%20%5Cdfrac%7B%20%280%20%5Ctimes%201%29%2B%280%20%5Ctimes%201%29%2B%281%20%5Ctimes%201%29%7D%20%7B%5Csqrt%20%7B%280%5E2%2B0%5E2%2B1%5E2%29%2B%281%5E2%2B1%5E2%20%2B1%5E2%29%7D%20%7D%20%5CBig%5D)

However, the critical resolved SS(shear stress)
can be computed using the formula:

where;
applied tensile stress
13.9 MPa
∴


Answer:
A safety margin is the space left between your vehicle and the next to provide room, time and visibility at every instant
Explanation:
A safety margin is defined as an allowance given between your vehicle and the next vehicle in front to provide enough room, visibility and time to move in a safe manner to prevent the occurrence of an accident at anytime the frontal vehicle suddenly stops or slows down
Safety margins help minimize risks in the following way
1) A common knowledge of safety margins, improves predictability among road users, thereby minimizing the risk traffic accidents caused due to late communication
2) The use of safety margins helps minimize the risk due to a change in driving conditions such as when the road becomes more slippery from being covered with fluid that is being wetted
3) Safety margin can help prevent the occurrence of an accident between vehicles due to failure of a car system, such as a punctured tire or failed breaking system
4) Safety margin helps to protect road users from the introduction of obstacles on the main roads such as ongoing road construction, broken down vehicles, road blockage by vehicles involved in an accident etc
5) Safety margin help protect road users from being involved in an accident due to the loss of driving focus of the driver of the frontal vehicle
Answer:
def output_ints_less_than_or_equal_to_threshold(user_values, upper_threshold):
for value in user_values:
if value < upper_threshold:
print(value)
def get_user_values():
n = int(input())
lst = []
for i in range(n):
lst.append(int(input()))
return lst
if __name__ == '__main__':
userValues = get_user_values()
upperThreshold = int(input())
output_ints_less_than_or_equal_to_threshold(userValues, upperThreshold)
Answer:
thank you for the free point have a great rest of your day