Increasing the tension of a spring affects a wave on the spring because it increases the frequency. When the tension rises, so does the frequency.
<h2>
Answer: high pressures</h2>
The Ideal Gas equation is:
Where:
is the pressure of the gas
the number of moles of gas
is the gas constant
is the absolute temperature of the gas in Kelvin.
According to this law, molecules in gaseous state do not exert any force among them (attraction or repulsion) and the volume of these molecules is small, therefore negligible in comparison with the volume of the container that contains them.
Now, real gases can behave approximately to an ideal gas, under the conditions described above.
However, when <u>temperature is low</u> these gases deviate from the ideal gas behavior, because the molecules move slowly, allowing the repulsion or attraction forces to take effect.
The same happens at <u>high pressures</u>, because the volume of molecules is no longer negligible.
Take the upward and to-the-right directions to be positive (so down and to-the-left are negative).
The vertical forces acting on the object cancel, 6 N - 6 N = 0.
The horizontal forces exert a net force of 20 N - 3 N = 17 N. This net force is positive, so it points to the right. So the answer is A.
<span>when an object is submerged in the water it losses its weight as accordinglyto</span>