Answer:
a = 1 m/s² and
Explanation:
The first two parts can be seen in attachment
We use Newton's second law on each axis
Y axis
Ty - W = 0
Ty = w
X axis
Tx = m a
With trigonometry we find the components of tension
Sin θ = Ty / T
Ty = T sin θ
Cos θ = Tx / T
Tx = T cos θ
We calculate the acceleration with kinematics
Vf = Vo + a t
a = (Vf -Vo) / t
a = (20 -10) / 10
a = 1 m/s²
We substitute in Newton's equations
T Sin θ = mg
T cos θ = ma
We divide the two equations
Tan θ = g / a
θ = tan⁻¹ (g / a)
θ = tan⁻¹ (9.8 / 1)
θ = 84º
We see that in the expression of the angle the mass does not appear therefore you should not change the angle
1 Kilojoule [kJ] = 737.562 149 277 27 Foot pound force [ftlbf]
The maximum force acts between B and C as the graph is steepest showing maximum deceleration
The value of spring constant and the oscillator's damping constant is
K= 6605.667008, b= 0.002884387
Explanation:
For Weakly damping spring oscillator
K/m = W_0^2 (at resonance)
K= mW_0^2
=0.206 * ( 2π * 28.5) ^2
=0.206 * (2π)^2 * (28.5)^2
K= 6605.667008
F = - bV
b= -F/V = -F/ -W_0 * m
=F/W_0 * m
= 0.438N / 2π * 28.5 * 0.848
b= 0.002884387
One method of creating a magnet is coiling wire around a nail and running electricity through it, to make the magnet stronger coil more wire and increase the Voltage.