Answer:
Plants consume carbon through transpiration
Explanation:
In transpiration, plants lose water vapor through the stomata in their leaves. No carbon is involved in transpiration, which has an outbound direction. Nothing can be consumed through the stomata when vapor is going out of the plant. It´s like trying to get in through the exit.
<span>It is the valence orbit that controls the electrical properties of the atom. The valence electron is referred to as a "free electron.' Valence electrons have the highest energy of all electrons in an atom; they are also the most reactive, meaning they are usually the electrons involved in bonding. When silicon atoms combine to form a solid, they arrange themselves into an orderly pattern called a crystal.</span>
Answer:
Assume that 100 grams of C2H4 is present. This means that there are 85.7 grams of carbon and 14.3 grams of hydrogen.
Convert these weights to moles of each element:
85.7 grams carbon/12 grams per mole = 7 moles of carbon.
14.3 grams hydrogen/1 gram per mole = 14 moles of hydrogen.
Divide by the lowest number of moles to obtain one mole of carbon and two moles of hydrogen.
Since we know that there cannot be a stable CH2 molecule, multiply by two and you have C2H4 which is ethylene - a known molecule.
The secret is to convert the percentages to moles and find the ration of the constituents.
2-Dimethylcyclohexanol <span>major alkene product is produced by the dehydration of the alcohols.</span>
Answer:
The oxidation number of C (carbon) is +4
Explanation: