<span>1.7 rad/s
The key thing here is conservation of angular momentum. The system as a whole will retain the same angular momentum. The initial velocity is 1.7 rad/s. As the person walks closer to the center of the spinning disk, the speed will increase. But I'm not going to bother calculating by how much. Just remember the speed will increase. And then as the person walks back out to the rim to the same distance that the person originally started, the speed will decrease. But during the entire walk, the total angular momentum remained constant. And since the initial mass distribution matches the final mass distribution, the final angular speed will match the initial angular speed.</span>
C- 10ft. Hope this helped. Have a great day! :D
Complete Question
The compete question is shown on the first uploaded question
Answer:
The speed is
Explanation:
From the question we are told that
The distance of separation is d = 4.00 m
The distance of the listener to the center between the speakers is I = 5.00 m
The change in the distance of the speaker is by 
The frequency of both speakers is 
Generally the distance of the listener to the first speaker is mathematically represented as
![L_1 = \sqrt{l^2 + [\frac{d}{2} ]^2}](https://tex.z-dn.net/?f=L_1%20%20%3D%20%20%5Csqrt%7Bl%5E2%20%2B%20%5B%5Cfrac%7Bd%7D%7B2%7D%20%5D%5E2%7D)
![L_1 = \sqrt{5^2 + [\frac{4}{2} ]^2}](https://tex.z-dn.net/?f=L_1%20%20%3D%20%20%5Csqrt%7B5%5E2%20%2B%20%5B%5Cfrac%7B4%7D%7B2%7D%20%5D%5E2%7D)

Generally the distance of the listener to second speaker at its new position is
![L_2 = \sqrt{l^2 + [\frac{d}{2} ]^2 + k}](https://tex.z-dn.net/?f=L_2%20%20%3D%20%20%5Csqrt%7Bl%5E2%20%2B%20%5B%5Cfrac%7Bd%7D%7B2%7D%20%5D%5E2%20%2B%20k%7D)
![L_2 = \sqrt{5^2 + [\frac{4}{2} ]^2 + 0.6}](https://tex.z-dn.net/?f=L_2%20%20%3D%20%20%5Csqrt%7B5%5E2%20%2B%20%5B%5Cfrac%7B4%7D%7B2%7D%20%5D%5E2%20%2B%200.6%7D)
Generally the path difference between the speakers is mathematically represented as

Here
is the wavelength which is mathematically represented as

=> 
=>
=>
Here n is the order of the maxima with value of n = 1 this because we are considering two adjacent waves
=>
=>