Answer: The correct answer is: " endothermic . "
______________________________________
<u>Note</u>: Heat flows <u> into </u> [heat <u> may be </u> absorbed within] an "<u>endothermic</u>" reaction or system
To the contrary, heat flows <u> </u><u>out </u> [heat <u> may </u><em> </em>exit from or <u> may be </u> released from] an "<u>exothermic</u>" reaction or process.
<u>Hint</u>: Think of the "prefixes" of: "<u>endo</u>thermic" and "<u>exo</u>thermic" :
_____________________________________
1) endo- = "within" (as in "endothermic" —heat tends to be absorbed/"within"/"released within"/released within"/into" ;
2) exo- = " outwards"/"exit" (as in "exothermic") —heat tends to '"exit"/leave/escape from/"be released out of/form".
_____________________________________
Hope this is helpful to you!
Best wishes to you in your academic pursuits
—and within the "Brainly" community"!
_____________________________________
Answer: The given statement is true.
Explanation:
Entropy means the measure of randomness present in a substance. That is, an increase in temperature will lead cause more motion in the particles of a substance more will be their kinetic energy.
As a result, there will occur more collisions due to which randomness of molecules will increase. Hence, there will be increase in entropy.
So, when we decrease the temperature then there will be decrease in motion of particles. As a result, lesser number of collisions will take place between them. Hence, degree of randomness will also decrease.
Thus, we can conclude the statement entropy of a system decreases with decrease in temperature, is true.
Answer:
True
Explanation:
The physical changes are reversible in most cases and these changes are not the chemical changes which means that it is only the change in its state not in their nature. Just take the example of water, on cooling it becomes solid and change in color can be seen which is white in solid form and colorless in liquid form. This is also reversible and is a physical change. This means that physical changes can be identified at macroscopic level. Hence the answer is true.
Answer:
It has been drawn and uploaded as an attachment. Please download it to see the structure.
Explanation:
The product formed as a result of the reaction of cyclohexene with H2 in presence of Pt (platinum) can be described as catalytic hydrogenation. Catalytic hydrogenation is defined as the process of hydrogen addition in the presence of a catalyst, which in this case is platinum.
Note that Cyclohexene (alkene) is a hydrocarbon molecule represented by the chemical formula, C6H10 .
It consists of a double bond. During the hydrogenation reaction, the alkene undergoes an addition reaction to give alkane which is a saturated hydrocarbon as the product.
The first step in order to derive the product is to draw the chemical structure of cyclohexene and identify the double bond present in it.
The final product can be derived by replacing the double bond with the single bond and satisfying all the valences of the carbon atom. The final product structure has been drawn and uploaded as an attachment. Please download it to see the structure.
Ans:
The structure of the cyclohexane thus, formed has been shown as follows with all the hydrogen atoms:
Anything can be broken down, as long as it is not as small as an atom