Explanation:
Given data
Inductance L=12*10^-³H
Capacitance C= 3.5*10^-6F
Resistance R= 3.3 Ohms
Voltage V=115v
Capacitive reactance Xc=?
inductive reactance Xl=?
Impedance Z=?
Phase angle =?
A. Resonance frequency
In RLC circuit resonance occurs when capacitive reactance equals inductive reactance
f=1/2pi √ LC
f=1/2*3.142 √ 12*10^-³*3.5*10^-6
f=1/6.284*0.0002
f=1/0.00125
f=800HZ
B. Find Irms at resonance.
Irms=R/V
Irms=3.3/115
Irms=0.028amp
Find the capacitive reactance XC in Ohms
Xc=1/2pi*f*C
Xc=1/2*3.142*800*3.5*10^-6
Xc=1/0.0176
Xc=56.8 ohms
To find the inductive reactance
Xl=2pifL
Xl=2*3.142*800*12*10^-3
Xl=60.3ohms
d) Find the impedance Z.
Z=√R²+(Xl-Xc)²
Z=√3.3²+(60.3-56.8)²
Z=√10.89+12.25
Z=√23.14
Z=4.8ohms
Phase angle =
Tan phi=Xc/R=56.8/3.3
Tan phi=17.2
Phi=tan-1 17.2
Phi= 1.51°
The answer is 0 degrees Celsius (0°C). It will be where the line flat lines the first time. The second time would be the boiling point. An experiment yielded the above temperature and time information. The freezing point of the material in this experiment if the material is a solid at time zero is 0 degrees Celsius (0°C) .
Answer:
Explanation:
AB = 110 miles
Let the distance of the western station from fire is d.
As according to the diagram, use Sine law

d = 110 x 0.2588 / 0.73
d = 39 miles
Soft target by impact and its contribution to indirect bone fractures.
<span> The boiling point of water at sea level is 100 °C. At higher altitudes, the boiling point of water will be.....
a) higher, because the altitude is greater.
b) lower, because temperatures are lower.
c) the same, because water always boils at 100 °C.
d) higher, because there are fewer water molecules in the air.
==> e) lower, because the atmospheric pressure is lower.
--------------------------
Water boils at a lower temperature on top of a mountain because there is less air pressure on the molecules.
-------------------
I hope this is helpful. </span>