True will end up being the answer
Dispersion forces are the only type of intermolecular force operating between non-polar molecules, for example, dispersion forces operate between hydrogen (H2) molecules, chlorine (Cl2) molecules, carbon dioxide (CO2) molecules, nitrogen tetroxide (N2O4) molecules and methane (CH4) molecules.
www.ausetute.com.au/intermof.html
The volume of the water in cubic meter is determined as 3.2 x 10⁶ m³ .
<h3>Weight of one gallon of water</h3>
The weight of 1 gal of water is given as 3785 g
Mass of 8.48 x 10⁸ gal = 3785 x 8.48 x 10⁸ = 3.2 x 10¹² g
<h3>Volume of the water in cubic meters</h3>
Volume = mass/density
Volume = 3.2 x 10¹² g/1 gmL
Volume = 3.2 x 10¹² mL x 10⁻⁶ m³/mL = 3.2 x 10⁶ m³
Thus, the volume of the water in cubic meter is determined as 3.2 x 10⁶ m³ .
Learn more about volume here: brainly.com/question/1972490
#SPJ1
Answer: C.)
Explanation:
i got it right on a unit test!
but it might be something else if there arranged different!
sorry!
3 L will be the final volume for the gas as per Charle's law.
Answer:
Explanation:
The kinetic theory of gases has two significant law which forms the backdrop of motion of gases. They are Charle's law and Boyle's law. As per Charle's law, the volume of any gas molecule at constant pressure is directly proportional to the temperature of the molecule.
V∝ T
Since, here two volumes are given and at two different temperatures with constant pressure. Then as per Charle's law, the relation between the volumes of air at different temperature will be

So in this case, V1 = 6 L and T1 = 80° C. Similarly, T2 = 40° C. So we have to determine the V2.


So, 3 L will be the final volume for the gas as per Charle's law.