Mass number is the number of protons and neutrons in an atom, and it tells us about the mass of the atom in amu, or atomic mass units. Atomic mass is the average mass of all the isotopes of a certain type. It is a weighted average that takes into account the abundances of all of the different isotopes
hope this helps :)
Answer:
The ΔG° is 29 kJ and the reaction is favored towards reactant.
Explanation:
Based on the given information, the ΔH°rxn or enthalpy change is 41.2 kJ, the ΔS°rxn or change in entropy is 42.1 J/K or 42.1 * 10⁻³ kJ/K. The temperature given is 289 K. Now the Gibbs Free energy change can be calculated by using the formula,
ΔG° = ΔH°rxn - TΔS°rxn
= 41.2 kJ - 289 K × 42.1 × 10⁻³ kJ/K
= 41.2 kJ - 12.2 kJ
= 29 kJ
As ΔG° of the reaction is positive, therefore, the reaction is favored towards reactant.
The compound that would have the highest osmotic pressure when dissolved in water is
.
So, option D is correct one.
The dissociation of one molecule of
gives the maximum number of ions when dissolved in water ( 4 ions ) . Osmotic pressure is a colligative property and depends upon number of solute particles present in the solution . The solution having maximum number of solute particles will have maximum number of the osmotic pressure .
All other given molecules gives less number of number of ions when dissolved in water as compare to of
.
To learn more about osmotic pressure
brainly.com/question/10046758
#SPJ4
Answer:
they repel
Explanation:
because like charges repel
Answer:
1. Hydrogen
Explanation:
These planets contain liquid hydrogen in their interior, while the earth has liquid iron in it.
When liquid hydrogen is in tremendous pressure enviroments, the electrons that make up each atom of this element end up "jumping" to other atoms. These "jumps" allow liquid hydrogen to behave like a metal.
In addition, with the constant energy released by the nucleus of planets like Jupiter and Saturn, as well as their rotations, the liquid hydrogen receives induction of currents, giving rise to extremely powerful magnetic fields.