The answer is A beautiful
Answer:
Enantiomers/ Isomers/ Stereoisomers/ Meso compounds/ Constitutional isomers/ Diastereomers.
Explanation:
Isomers are molecules that have the same chemical formula but have different conformation, or in its connections, or the orientation in space. Isomers have different chemical and physical properties (second blank).
The isomers that only differ by the orientation of their atoms in space are called stereoisomers (third blank).
The stereoisomers that have a chiral carbon and do not mirror images of each are called enantiomers (first blank). They can deviate the polarized light.
When a compound has two or more chiral carbons but they compensate for the deviation of the light, and the compound is optically inactive, it's called a meso compound (fourth blank).
When the isomers differ in the way the atoms are connected it's called a constitutional isomer (fifth blank).
When the molecule has more than one chiral carbon, it will have pairs of enantiomers. The isomers that aren't of the same pair are nonsuperimposable mirror images of each other and are called diastereomers (last blank).
Answer : The
must be administered.
Solution :
As we are given that a vial containing radioactive selenium-75 has an activity of
.
As, 3.0 mCi radioactive selenium-75 present in 1 ml
So, 2.6 mCi radioactive selenium-75 present in 
Conversion :

Therefore, the
must be administered.
Answer:
Weak bonds require less energy to form than strong bonds
Explanation:
According to Coulomb's law, the force between two species is inversely proportional to the distance between them. That said, the bigger the atoms are, the greater the bond length should be to form a molecule.
As a result, for a greater bond length, the attraction force is lower than for a shorter bond length. This implies that large atoms would form weak bonds and small atoms would form strong bonds.
Bond energy is defined as the amount of energy required to break the bond. If a bond is weak, it would require a low amount of energy to break it. This is also true for energy of formation, as it's the same process taking place in the opposite direction.