Explanation:
The law of conservation of energy states that energy can neither be created nor destroyed - only converted from one form of energy to another. This means that a system always has the same amount of energy, unless it's added from the outside. ... is the heat added to, or removed from, the system.
<span>The equation that describes the problem is Fe(NO3)3(aq) + 3NaOH(aq) ---> Fe(OH)3(s) + 3 NaNO3(aq)
The Net ionic equation is written as follows:
Fe^3(aq) + 3NO3-(aq) + 3Na+(aq) + 3OH-(aq) ---> Fe(OH)3(s) + 3Na+(aq) + 3NO^3-(aq)</span>
5.88 moles x 6.02x10^23<span> f.u./mole = </span><span>3.54x1024 formula units</span>
The amount of energy released when 0.06 kg of mercury condenses at the same temperature can be calculated using its latent heat of fusion which is the opposite of melting. Latent heat of fusion and melting can be used because they have the same magnitude, but opposite signs. Latent heat is the amount of energy required to change the state or phase of a substance. For latent heat, there is no temperature change. The equation is:
E = m(ΔH)
where:
m = mass of substance
ΔH = latent heat of fusion or melting
According to data, the ΔH of mercury is approximately 11.6 kJ/kg.
E = 0.06kg (11.6 kJ/kg) = 0.696 kJ or 696 J
The answer is D. 697.08 J. Note that small differences could be due to rounding off or different data sources.
Answer:
2m/s²
Explanation:
When an object starts or at its state of rest it has an Initial speed U = 0
Final speed = 6m/s
total time taken for the acceleration = 3s
Acceleration =?
Acceleration is the change in velocity (speed) with time
OR
Time rate of change of velocity
Acceleration = <u>Change in Speed(velocity)</u>
Time taken
Hence,
Acceleration = <u> </u><u> </u><u>V - </u><u>U</u><u> </u><u> </u>
t
a = <u>6</u><u> </u><u>-</u><u> </u><u>0</u>
3
a = <u>6</u><u> </u><u> </u>
3
a = 2m/s²