Answer:
The structures shown by dots and lines to give the exact number of electrons in the outer most shell is explained by Lewis Structures.
Explanation:
Lewis structures are those structures in which the diagram is shown using the electron representation. They are easy to understand as the diagram completely depicts where the electrons are shared and where they are transferred. The diagram also explains where there is a single bond and where there is a di covalent bond or tri covalent bond explaining where the single , double or triple electron pair is shared. The electrons are shown by dots or lines.
For example CCl₄ can be shown as follows
..
.. Cl..
.. ..
..Cl..----------C----------..Cl..
..
.. Cl..
The picture shows that each chlorine has six electrons in its outer shell and then a pair of electron is shared with carbon forming a single covalent bond.
Similarly methane CH4 can also be shown.
The hydrogen has one electron and it shares an electron from carbon stabilising itself forming methane.
Answer:
18 liters
Explanation:
Step 1: Figure out what the formula and what you are dealing with.
- 25 degrees celcius is constant, so it is irrelevant for the mathmatical part.
- P1 = 1 atm
- P2 = 20 atm
- V1 = 360 liters
- V2 = trying to find
Note: remember the original equation is V1/P1 = V2/P2
- Step 2: Rearrange the equation to fit this problem, you should get...
V2 = V1 x P1 / P2
- Step 3: Fill our own numbers in. You should get...
360 L x 1 atm / 20 atm = 18 Liters (do the math)
- Answer = 18 Liters
- Remember to just follow the formula and fill it in with your own numbers.
If you need any more help comment below. I am happy to help anytime.
Answer: D
Explanation: I got it wrong on my test :( and got this answer as correct.
Half-life is the length of time it takes for half of the radioactive atoms of a specific radionuclide to decay. A good rule of thumb is that, after seven half-lives, you will have less than one percent of the original amount of radiation.
<h3>What do you mean by half-life?</h3>
half-life, in radioactivity, the interval of time required for one-half of the atomic nuclei of a radioactive sample to decay (change spontaneously into other nuclear species by emitting particles and energy), or, equivalently, the time interval required for the number of disintegrations per second of a radioactive.
<h3>What affects the half-life of an isotope?</h3>
Since the chemical bonding between atoms involves the deformation of atomic electron wavefunctions, the radioactive half-life of an atom can depend on how it is bonded to other atoms. Simply by changing the neighboring atoms that are bonded to a radioactive isotope, we can change its half-life.
Learn more about half life of an isotope here:
<h3>
brainly.com/question/13979590</h3><h3 /><h3>#SPJ4</h3>