Answer:
a
Explanation:
im thinking because the water is a room temperature there shouldnt be anm immence amount og heat energy for it to have a good amount of energy tho i could be wrong because its not moving it could have no energy.
Answer:
The molarity of a solution is 2.5 M
Explanation:
Molarity is a concentration unit that describes how much of a solution is dissolved in solution.
Molarity of a solution can found by using the formula,
Molarity (M) = (moles of solute)/(Liters of Solution).
Given, mass of Sodium = 114.95 grams.
Volume of water = 2 L.
Here, Sodium is solute as it is dissolved in water, which is the solvent.
Moles of Sodium(solute) can be found by using the formula,
Number of Moles = mass/Molecular weight.
mass of Sodium = 114.95 grams.
Molecular weight = 22.989 grams
Number of Moles of Sodium(solute) =114.95/22.989 = 5.
Substituting the values in the formula, we get,
M = 5/2 = 2.5 M
Answer:
0.1035 M
Explanation:
Considering:
Sodium chloride will furnish Sodium ions as:
Given :
For Sodium chloride :
Molarity = 0.288 M
Volume = 3.58 mL
The conversion of mL to L is shown below:
1 mL = 10⁻³ L
Thus, volume = 3.58×10⁻³ L
Thus, moles of Sodium furnished by Sodium chloride is same the moles of Sodium chloride as shown below:
Moles of sodium ions by sodium chloride = 0.00103104 moles
Sodium sulfate will furnish Sodium ions as:
Given :
For Sodium sulfate :
Molarity = 0.001 M
Volume = 6.51 mL
The conversion of mL to L is shown below:
1 mL = 10⁻³ L
Thus, volume = 6.51 ×10⁻³ L
Thus, moles of Sodium furnished by Sodium sulfate is twice the moles of Sodium sulfate as shown below:
Moles of sodium ions by Sodium sulfate = 0.00001302 moles
Total moles = 0.00103104 moles + 0.00001302 moles = 0.00104406 moles
Total volume = 3.58 ×10⁻³ L + 6.51 ×10⁻³ L = 10.09 ×10⁻³ L
Concentration of sodium ions is:
<u>
The final concentration of sodium anion = 0.1035 M</u>
<h2>Answer:</h2>
<u>Temperature dependency is responsible for the process that hot water freeze faster than cold water.</u>
<h2>Explanation:</h2>
The effect given above is called Mpemba Effect. According to this idea hot water freezes more quickly as compared to cold water. But until now there is no convincing explanation for this strange phenomenon. One idea is that hot containers make better thermal contact with a refrigerator and so conduct heat more efficiently because a good conductor is good fro the transfer of heat. Another idea about this effect is that warm water evaporates more quickly and since this is an endothermic process, it cools the water making it freeze more quickly.
Answer:
2.79 °C/m
Explanation:
When a nonvolatile solute is dissolved in a pure solvent, the boiling point of the solvent increases. This property is called ebullioscopy. The temperature change (ΔT) can be calculated by:
ΔT = Kb*W*i
Where Kb is the ebullioscopy constant for the solvent, W is the molality and i is the van't Hoff factor.
W = m1/(M1*m2)
Where m1 is the mass of the solute (in g), M1 is the molar mass of the solute, and m2 is the mass of the solvent (in kg).
The van't Hoff factor represents the dissociation of the elements. For an organic molecule, we can approximate i = 1. Thus:
m1 = 2.00 g
M1 = 147 g/mol
m2 = 0.0225 kg
W = 2/(147*0.0225)
W = 0.6047 mol/kg
(82.39 - 80.70) = Kb*0.6047*1
0.6047Kb = 1.69
Kb = 2.79 °C/m