1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna11 [10]
3 years ago
8

A bicycle pump contains 20 cm3 of air at a pressure of 100 kPa. The air is then pumped in a tyre of volume 100 cm3. Calculate th

e pressure of the air in the tyre. Assume that the temperature is fixed. ​
Physics
1 answer:
Natasha2012 [34]3 years ago
7 0

Answer:

The pressure of the air in the tyre is 20 kPa

Explanation:

The parameters for the bicycle pump and tyre are;

The volume of air contained in the bicycle pump, V₁ = 20 cm³

The pressure of the air contained in the bicycle pump, P₁ = 100 kPa

The volume (available) of the tyre, where the air is pumped, V₂ = 100 cm³

Let P₂ represent the pressure in the tyre after the air is pumped

By Boyle's law, we have that at constant temperature, the volume of a given mass of gas is inversely proportional to its pressure;

Mathematically, Boyle's law gives the following equation;

P₁ × V₁ = P₂ × V₂

∴ P₂ = (P₁ × V₁)/V₂

Substituting the known values gives;

P₂ = (100 kPa × 20 cm³)/(100 cm³)

∴ P₂ = 100 kPa × 1/5 = 20 kPa

P₂ = 20 kPa

The pressure of the air in the tyre = P₂ = 20 kPa.

You might be interested in
A baseball pitcher throws the ball towards the batter at 90 mph. His bat connects with the ball for a line drive, after which th
forsale [732]

Answer:

F=-18412.9N, where the minus indicates the direction is opposite to that of the throw.

Explanation:

a)

Since MKS stands for meter-kilogram-second and we know that:

1\ hour = 3600\ seconds

1\ mile = 1600\ meters

1000g = 1kg

We can write that:

\frac{1\ hour}{3600\ seconds}=1

\frac{1600\ meters}{1\ mile}=1

\frac{1kg}{1000g}=1

These are conversion factors, equal to 1, so multiplying our results by them won't change their value, only their units.

So we have that:

90 mph=90 \frac{miles}{hour}(\frac{1\ hour}{3600\ seconds})(\frac{1600\ meters}{1\ mile})=40m/s

110 mph=110 \frac{miles}{hour}(\frac{1\ hour}{3600\ seconds})(\frac{1600\ meters}{1\ mile})=48.89m/s

145 g=145 g(\frac{1kg}{1000g})=0.145kg

b)

Newton's 2nd Law tells us that F=ma, and the definition of acceleration is a=\frac{\Delta v}{\Delta t}, so we have:

F=m\frac{\Delta v}{\Delta t}=m\frac{v_f-v_i}{t}

Taking the throw direction as the positive one, for our values we have:

F=m\frac{v_f-v_i}{t}=(0.145kg)\frac{(-48.89m/s)-(+40m/s)}{0.0007s}=-18412.9N

4 0
3 years ago
1. Aunt Minnie gives you $10 per second for 4 seconds. How much money do you have after 4 se
9966 [12]

Answer:

$40

Explanation:

10 × 4 = 40

or

10 + 10 + 10 + 10 = 40

4 0
3 years ago
Read 2 more answers
If the pressure in a gas is doubled while its volume is held constant, by what factor do vrms change
Nat2105 [25]

Answer is given below

Explanation:

given data

pressure = double

volume = constant

solution

As we know that an Average velocity and rms velocity is directly proportional to square root of PV ..................1

so if we take P is doubled while keeping V constant

than Velocity increases by a factor \sqrt{2}  

so that Factor = 1.414 for both the cases

8 0
3 years ago
Any help guys? I am stuck on two problems.
Juli2301 [7.4K]

Ax=A*Cos56

   = 20*(0.559)

   = 11.18 N

8 0
3 years ago
Find the coefficient of kinetic friction μk. express your answer in terms of some or all of the variables d1, d2, and θ.
Andre45 [30]
<span>internet tension = mass * acceleration internet tension = 23 – Friction tension = 14 * acceleration Friction tension = µ * 14 * 9.8 = µ * 137.2 23 – µ * 137.2 = 14 * acceleration Distance = undemanding speed * time undemanding speed = ½ * (preliminary speed + very final speed) Distance = ½ * (preliminary speed + very final speed) * time Distance = 8.a million m, preliminary speed = 0 m/s, very final speed = a million.8 m/s 8.a million = ½ * (0 + a million.8) * t Time = 8.a million ÷ 0.9 = 9 seconds Acceleration = (very final speed – preliminary speed) ÷ time Acceleration = (a million.8 – 0) ÷ 9 = 0.2 m/s^2 23 – µ * 137.2 = 14 * 0.2 resolve for µ</span>
6 0
3 years ago
Read 2 more answers
Other questions:
  • The question states: two large, parallel conducting plates are 12cm
    13·1 answer
  • Before 1960, people believed that the maximum attainable coefficient of static friction for an automobile tire on a roadway was
    8·1 answer
  • Helppp plss
    13·1 answer
  • Newton's law of universal gravitation is represented by f = g mm r2 where f is the gravitational force, m and m are masses, and
    7·1 answer
  • All of the following are stages of change EXCEPT
    13·1 answer
  • Leah is moving in a spaceship at a constant velocity away from a group of stars. Which one of the following statements indicates
    11·1 answer
  • An ac generator provides emf to a resistive load in a remote factory over a two-cable transmission line. At the factory a step-
    6·1 answer
  • We know that the motion of the Moon around the Earth is due
    7·1 answer
  • If two objects have the same volume but one has a greater mass, the one with greater mass
    6·1 answer
  • A plane is flying to Minnesota with a velocity of 277.73 km/h, N. The plane
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!