Answer:
12.6 cm
Explanation:
We can use the mirror equation to find the distance of the image from the mirror:

where here we have
f = 9.50 cm is the focal length
p = 39 cm is the distance of the object from the mirror
Solving the equation for q, we find:

If you go to high you’ll run out of oxygen and possibly be blown off due to high winds.
Potential energy = mgh
Potential energy = 10 x 9.8 x 1.3
Potential energy = 127.4 J
According to Stefan-Boltzmann Law, the thermal energy radiated by a radiator per second per unit area is proportional to the fourth power of the absolute temperature. It is given by;
P/A = σ T⁴ j/m²s
Where; P is the power, A is the area in square Meters, T is temperature in kelvin and σ is the Stefan-Boltzmann constant, ( 5.67 × 10^-8 watt/m²K⁴)
Therefore;
Power/square meter = (5.67 × 10^-8) × (3000)⁴
= 4.59 × 10^6 Watts/square meter
Answer:
The value is the temperature of the air inside the tire
340.54 K
% of the original mass of air in the tire should be released 99.706 %
Explanation:
Initial gauge pressure = 2.7 atm
Absolute pressure at inlet
= 2.7 + 1 = 3.7 atm
Absolute pressure at outlet
= 3.2 + 1 = 4.2 atm
Temperature at inlet
= 300 K
(a) Volume of the system is constant so pressure is directly proportional to the temperature.


340.54 K
This is the value is the temperature of the air inside the tire
(b). Since volume of the tyre is constant & pressure reaches the original value.
From ideal gas equation P V = m R T
Since P , V & R is constant. So
m T = constant




value of the original mass of air in the tire should be released is

⇒ -0.99706
% of the original mass of air in the tire should be released 99.706 %.