Answer:
0.00011 JK.
The process does NOT violate the second law of thermodynamics
Explanation:
The following parameters are given which are going to help in solving for the change in entropy of the system. The term "entropy'' simply means the degree of disorderliness of a system.
=> The temperature of container A = 305 K, the temperature of container B = 295 K and the amount of heat generated when the containers are placed in contact with each other = 1. 1 J.
The change in entropy of the hot container = -(1/305) = - 0.00328 J/K.
The change in entropy of the cold container = 1/295 = 0.00339 J/K.
Therefore, the change in the entropy of the system = - 0.00328 J/K + 0.00339 J/K = 0.00011 JK.
Note that the change in entropy of the system gives a positive value. Hence, this process does not violate the second law of thermodynamics.
The process does NOT violate the second law of thermodynamics.
Answer:
9.9652g of water
Explanation:
The establishment of the liquid-vapor equilibrium occurs when the vapour of water is equal to vapour pressurem 26.7 mmHg. Using gas law it is possible to know how many moles exert that pressure, thus:
n = PV / RT
Where P is pressure 26,7 mmHg (0.0351atm), V is volume (1.350L), R is gas constant (0.082 atmL/molK) and T is temperature (27°C + 273,15 = 300.15K)
Replacing:
n = 0.0351atm×1.350L / 0.082atmL/molK×300.15K
n = 1.93x10⁻³ moles of water are in gaseous phase. In grams:
1.93x10⁻³ moles × (18.01g / 1mol) = <u><em>0.0348g of water</em></u>
<u><em /></u>
As the initial mass of water was 10g, the mass of water that remains in liquid phase is:
10g - 0.0348g = <em>9.9652g of water</em>
<em />
I hope it helps!
Answer : The molar mass of the unknown gas will be 79.7 g/mol
Explanation : To solve this question we can use graham's law;
Now we can use nitrogen as the gas number 2, which travels faster than gas 1;
So, 167 / 99 = 1.687 So the nitrogen gas is 1.687 times faster that the unknown gas 1
We can compare the rates of both the gases;
So here, Rate of gas 2 / Rate of gas 1 =
Now, 1.687 = square root [
]
When we square both the sides we get;
2.845 = (molar mass 1) / (28.01 g/mol N2)
On rearranging, we get,
2.845 X (28.01 g/mol N2) = Molar mass 1
So the molar mass of unknown gas will be = 79.7 g/mol
Tell the teacher, do NOT clean it up yourself.
Answer:
Wavelengths..
Explanation:
The colors we see always go from red, which is least refracted, through orange, yellow, green, blue, indigo and violet -- Roy G Biv. The blue, indigo and violet wavelengths are refracted the most as sunlight passes through raindrops.