It would take millions of years to form a mountain as plates move very slowly and to form it first one plate should climb upon another. After this very slowly this hill will convert into a mountain.
Answer:
![\Delta t=(\frac{20}{g'}+\sqrt{\frac{400}{g'^2}+\frac{100}{g'} } )-(\frac{20}{g}+\sqrt{\frac{400}{g^2}+\frac{100}{g} } )](https://tex.z-dn.net/?f=%5CDelta%20t%3D%28%5Cfrac%7B20%7D%7Bg%27%7D%2B%5Csqrt%7B%5Cfrac%7B400%7D%7Bg%27%5E2%7D%2B%5Cfrac%7B100%7D%7Bg%27%7D%20%20%7D%20%20%29-%28%5Cfrac%7B20%7D%7Bg%7D%2B%5Csqrt%7B%5Cfrac%7B400%7D%7Bg%5E2%7D%2B%5Cfrac%7B100%7D%7Bg%7D%20%20%7D%20%20%29)
Explanation:
Given:
height above which the rock is thrown up, ![\Delta h=50\ m](https://tex.z-dn.net/?f=%5CDelta%20h%3D50%5C%20m)
initial velocity of projection, ![u=20\ m.s^{-1}](https://tex.z-dn.net/?f=u%3D20%5C%20m.s%5E%7B-1%7D)
let the gravity on the other planet be g'
The time taken by the rock to reach the top height on the exoplanet:
where:
final velocity at the top height = 0 ![m.s^{-1}](https://tex.z-dn.net/?f=m.s%5E%7B-1%7D)
(-ve sign to indicate that acceleration acts opposite to the velocity)
![t'=\frac{20}{g'}\ s](https://tex.z-dn.net/?f=t%27%3D%5Cfrac%7B20%7D%7Bg%27%7D%5C%20s)
The time taken by the rock to reach the top height on the earth:
![v=u+g.t](https://tex.z-dn.net/?f=v%3Du%2Bg.t)
![0=20-g.t](https://tex.z-dn.net/?f=0%3D20-g.t)
![t=\frac{20}{g} \ s](https://tex.z-dn.net/?f=t%3D%5Cfrac%7B20%7D%7Bg%7D%20%5C%20s)
Height reached by the rock above the point of throwing on the exoplanet:
![v^2=u^2+2g'.h'](https://tex.z-dn.net/?f=v%5E2%3Du%5E2%2B2g%27.h%27)
where:
final velocity at the top height = 0 ![m.s^{-1}](https://tex.z-dn.net/?f=m.s%5E%7B-1%7D)
![0^2=20^2-2\times g'.h'](https://tex.z-dn.net/?f=0%5E2%3D20%5E2-2%5Ctimes%20g%27.h%27)
![h'=\frac{200}{g'}\ m](https://tex.z-dn.net/?f=h%27%3D%5Cfrac%7B200%7D%7Bg%27%7D%5C%20m)
Height reached by the rock above the point of throwing on the earth:
![v^2=u^2+2g.h](https://tex.z-dn.net/?f=v%5E2%3Du%5E2%2B2g.h)
![0^2=20^2-2g.h](https://tex.z-dn.net/?f=0%5E2%3D20%5E2-2g.h)
![h=\frac{200}{g}\ m](https://tex.z-dn.net/?f=h%3D%5Cfrac%7B200%7D%7Bg%7D%5C%20m)
The time taken by the rock to fall from the highest point to the ground on the exoplanet:
(during falling it falls below the cliff)
here:
initial velocity= 0 ![m.s^{-1}](https://tex.z-dn.net/?f=m.s%5E%7B-1%7D)
![\frac{200}{g'}+50 =0+\frac{1}{2} g'.t_f'^2](https://tex.z-dn.net/?f=%5Cfrac%7B200%7D%7Bg%27%7D%2B50%20%3D0%2B%5Cfrac%7B1%7D%7B2%7D%20g%27.t_f%27%5E2)
![t_f'^2=\frac{400}{g'^2}+\frac{100}{g'}](https://tex.z-dn.net/?f=t_f%27%5E2%3D%5Cfrac%7B400%7D%7Bg%27%5E2%7D%2B%5Cfrac%7B100%7D%7Bg%27%7D)
![t_f'=\sqrt{\frac{400}{g'^2}+\frac{100}{g'} }](https://tex.z-dn.net/?f=t_f%27%3D%5Csqrt%7B%5Cfrac%7B400%7D%7Bg%27%5E2%7D%2B%5Cfrac%7B100%7D%7Bg%27%7D%20%20%7D)
Similarly on earth:
![t_f=\sqrt{\frac{400}{g^2}+\frac{100}{g} }](https://tex.z-dn.net/?f=t_f%3D%5Csqrt%7B%5Cfrac%7B400%7D%7Bg%5E2%7D%2B%5Cfrac%7B100%7D%7Bg%7D%20%20%7D)
Now the required time difference:
![\Delta t=(t'+t_f')-(t+t_f)](https://tex.z-dn.net/?f=%5CDelta%20t%3D%28t%27%2Bt_f%27%29-%28t%2Bt_f%29)
![\Delta t=(\frac{20}{g'}+\sqrt{\frac{400}{g'^2}+\frac{100}{g'} } )-(\frac{20}{g}+\sqrt{\frac{400}{g^2}+\frac{100}{g} } )](https://tex.z-dn.net/?f=%5CDelta%20t%3D%28%5Cfrac%7B20%7D%7Bg%27%7D%2B%5Csqrt%7B%5Cfrac%7B400%7D%7Bg%27%5E2%7D%2B%5Cfrac%7B100%7D%7Bg%27%7D%20%20%7D%20%20%29-%28%5Cfrac%7B20%7D%7Bg%7D%2B%5Csqrt%7B%5Cfrac%7B400%7D%7Bg%5E2%7D%2B%5Cfrac%7B100%7D%7Bg%7D%20%20%7D%20%20%29)
A fan may be used to model an atom because the fan blades form something similar to a electron cloud. But there is really nothing to model the neutrons and protons. Also the fan is flat like where an atom is more 3-D sphere-like.
hope this helps
Ur welcome
have a great day (:
Answer:
he can subtract the distance and then divide by the time it takes him
Explanation: