In order to solve this problem, there are two equations that you need to know to solve this problem and pretty much all of kinematics. The first is that d=0.5at^2 (d=vertical distance, a=acceleration due to gravity and t=time). The second is vf-vi=at (vf=final velocity, vi=initial velocity, a=acceleration due to gravity, t=time). So to find the time that the ball traveled, isolate the t-variable from the d=0.5at^2. Isolate the t and the equation now becomes

. Solving the equation where d=8 and a=9.8 makes the time

=1.355 seconds. With the second equation, the vi=0 m/s, the vf is unknown, a=9.8 m/s^2 and t=1.355 sec. Substitute all these values into the equation vf-vi=at, this makes it vf-0=9.8(1.355). This means that the vf=13.28 m/s.
Answer:
In physics and engineering, a resultant force is the single force and associated torque obtained by combining a system of forces and torques acting on a rigid body. The defining feature of a resultant force, or resultant force-torque, is that it has the same effect on the rigid body as the original system of forces.
I hope it's helpful!
Answer:
Mechanical resonance is the tendency of a mechanical system to respond at greater amplitude when the frequency of its oscillations matches the system's natural frequency of vibration (its resonance frequency.
Explanation:
If a volcano epulses massive amounts of dust into the atmosphere, those two things will/can happen.
The events will last until the dust lays down on the earth.
Answer:
The Big Crunch hypothesis is a symmetric view of the ultimate fate of the universe. Just as the Big Bang started as a cosmological expansion, this theory assumes that the average density of the universe will be enough to stop its expansion and begin contracting.
Explanation:
hope it helps