67.45 is the answer I think
Answer:
Both b/c a chemical formula tells you how many and a sketch formula shows how they are bonded together.
Molecular formulas show how many atoms of each element one molecule of a compound contains. Note: Ionic compounds are generally crystalline solids with high melting points. Other compounds, however, have very different properties.
Answer:
<h2>Lead(II) oxide</h2>
Explanation:
<h3>Lead(II) oxide, also called lead monoxide, is the inorganic compound with the molecular formula PbO. PbO occurs in two polymorphs: litharge having a tetragonal crystal structure, and massicot having an orthorhombic crystal structure. Modern applications for PbO are mostly in lead-based industrial glass and industrial ceramics, including computer components. It is an amphoteric oxide.[3]</h3>
- Other names
- Lead monoxide
- Litharge
- Massicot
- Plumbous oxide
- Galena
<h2> Preparation</h2><h3>PbO may be prepared by heating lead metal in air at approximately 600 °C (1,100 °F). At this temperature it is also the end product of oxidation of other oxides of lead in air:[4]</h3><h3>Thermal decomposition of lead(II) nitrate or lead(II) carbonate also results in the formation of PbO:</h3>
<h3>2 Pb(NO</h3><h3>3)</h3><h3>2 → 2 PbO + 4 NO</h3><h3>2 + O</h3><h3>2</h3><h3>PbCO</h3><h3>3 → PbO + CO2</h3><h3>PbO is produced on a large scale as an intermediate product in refining raw lead ores into metallic lead. The usual lead ore is galena (lead(II) sulfide). At a temperature of around 1,000 °C (1,800 °F) the sulfide is converted to the oxide:[5]</h3>
<h3>2 PbS + 3 O</h3><h3>2 → 2 PbO + 2 SO2</h3><h3>Metallic lead is obtained by reducing PbO with carbon monoxide at around 1,200 °C (2,200 °F):[6]</h3>
<h3>PbO + CO → Pb + CO2</h3>
pls brainlest meh
The affect of plate movement might have on the size of the ocean basin would be negative and over many millenia it will gradually decrease in size
Answer:
C
Explanation:
When a line segment and a plane intersect, they intersect at a point. They both coincide on point C