In order to obtain solid NaCl, the student should do a few steps.
First, he/she should do filtration. Pass the mixture through a filter paper, where all the sand should be filtered out already because they're not dissolved in the solution plus they're too small to pass through the filter paper.
Next, the filtrate should be left with NaCl (aqueous state). To seperate NaCl with the liquid, the student can either do evaporation or crystallization, depending on how pure or fast he/she wants the results to be. Evaporation involves heating the beaker or whatever apparatus under the bunsen burner until all the liquid has evaporated. Then, some white powder should be left, they're NaCl solid. For crystallization, the student should just put the beaker on a room condition environment, and wait. They might have to wait a month or so for the liquid to completely evaporate itself and left with clear and pure NaCl crystals.
Answer:
HgSO₄
Explanation:
% => g => moles => ratio => reduce => empirical ratio
%Hg = 67.6% => 67.6g/201g/mol = 0.34mol
%S = 10.8% => 10.8g/32g/mol = 0.34mol
%O = 21.6% => 21.6g/16g/mol = 1.35mol
Hg:S:O => 0.34:0.34:1.35
Reduce to whole number ratio by dividing by the smaller mole value...
Hg:S:O => 0.34/.34:0.34/.34:1.35/.34 => Empirical Ratio = 1:1:4
∴ Empirical Formula is HgSO₄
Answer:
The answer is barium phosphate
<span>Higher energy = shorter wavelength
Frequency is one cycle over an amount of time (seconds)
So higher frequency = higher energy = shorter wavelength</span>
Answer:
both
Explanation:
id say that it could occur but also not as much. the moon would be smaller and further from the earth to where we would barely be able to see it. if the full moon is barely visible then im sure the total solar eclipse wouldn't be as noticeable as it is now. but thats just my opinion