Answer: perpendicular to it oscillations.
Explanation: A transverse wave is a wave whose oscillations is perpendicular to the direction of the wave.
By perpendicular, we mean that the wave is oscillating on the vertical axis (y) of a Cartesian plane and the vibration is along the horizontal axis (x) of the plane.
Examples of transverse waves includes wave in a string, water wave and light.
Let us take a wave in a string for example, you tie one end of a string to a fixed point and the other end is free with you holding it.
If you move the rope vertically ( that's up and down) you will notice a kind of wave traveling away from you ( horizontally) to the fixed point.
Since the oscillations is perpendicular to the direction of wave, it is a transverse wave
'Pressure' is (force) / (area).
The only choice with those units is #1 .
Answer:
C = 17 i^ - 7 j^ + 16 k^
, | C| = 24.37
Explanation:
To work the vactor component method, we add the sum in each axis
C = A + B = (Aₓ + Bₓ) i ^ + (
+
) i ^ + (
+
) k ^
Cₓ = 12+ 5 = 17
= -37 +30 = -7
= 58 -42 = 16
Resulting vector
C = 17 i ^ - 7j ^ + 16k ^
The mangitude of the vector is
| C | = √ c²
| C | = √( 17² + 7² + 16²)
| C| = 24.37
Answer: The unit of impulse is applied to an object produces an equivalent vector change in its linear momentum, also in the same direction.
Explanation:
Answer:
A block device is a computer data storage device that supports reading and (optionally) writing data in fixed-size blocks, sectors, or clusters. These blocks are generally 512 bytes or a multiple thereof in size