Answer:
0.12 M hydrofluoric acid + 0.17 M potassium fluoride
Explanation:
To make a buffer, you must to have an aqueous mixture of a weak acid and its conjugate base or vice versa.
Knowing that:
0.32 M calcium chloride + 0.27 M sodium chloride: <em>is not a good buffer system </em>because CaCl₂ and NaCl are both salts.
0.35 M ammonia + 0.36 M calcium hydroxide <em>is not a good buffer system </em>because ammonia is a weak base but calcium hydroxide is a strong base
0.19 M barium hydroxide + 0.28 M barium chloride <em>is not a good buffer system </em>because Ba(OH)₂ is a strong base.
0.12 M hydrofluoric acid + 0.17 M potassium fluoride <em>is a good buffer system </em>because HF is a weak acid and KF (F⁻ in aqueous medium), is its conjugate base
0.20 M hydrobromic acid + 0.22 M sodium bromide <em>is not a good buffer system </em>because HBr is a strong acid.
Answer:
1: A b/c the table is showing that each different surface resulted in different time for acceleration.
2: D b/c the if the same force is applied to two different masses, the smaller masses would be impacted more and move faster. The larger an object is, then the greater the force you will need for it to move the same distance as the smaller masses.
Answer:
Because in elastic collisions there is no heat emission or absorption.
Explanation:
A collision is considered elastic when the total kinetic energy of the study system is conserved during the collision. Since the total kinetic energy is conserved, heat is not emitted or absorbed during the collision. Since the emission or absorption of heat is what produces changes in temperature, If the system remains at a constant temperature, there were only elastic collisions.