The given question is incomplete. The complete question is:
How much heat is produced when 24.8 g of
is burned in excess oxygen gas
Given:
ΔH= −802 kJ.
Answer: 1243.1 kJ
Explanation:
Heat of combustion is the amount of heat released on complete combustion of 1 mole of substance.
Given :
Amount of heat released on combustion of 1 mole of methane = 802 kJ kJ/mol
According to avogadro's law, 1 mole of every substance occupies 22.4 L at NTP, weighs equal to the molecular mass and contains avogadro's number
of particles.
1 mole of
weighs = 16 g
Thus we can say:
16 g of
on combustion releases heat = 802 kJ
Thus 24.8 g of
on combustion releases =
Thus heat released when 24.8 g of methane is burned in excess oxygen gas is 1243.1 kJ
Answer:0.00000009
Explanation:
9.11 × (1/1000000000)=0.00000009
Homogeneous mixture because it contains the same properties as homogeneous
mass of PbI₂ = 27.6606 g
<h3>Further explanation</h3>
Given
Pb(NO₃)₂ + NaI → PbI₂ + NaNO₃
28.0 grams of Pb(NO₃)₂ react with 18.0 grams of NaI
Required
mass of PbI₂
Solution
Balanced equation
Pb(NO₃)₂ + 2NaI → PbI₂ + 2NaNO₃
The principle of a balanced reaction is the number of atoms in the reactants = the number of atoms in the product
mol Pb(NO₃)₂ :
= 28 : 331,2 g/mol
= 0.0845
mol NaI :
= 18 : 149,89 g/mol
= 0.12
Limiting reactant : mol : coefficient
Pb(NO₃)₂ : 0.0845 : 1 = 0.0845
NaI : 0.12 : 2 = 0.06
NaI limiting reactant (smaller ratio)
mol PbI₂ based on NaI
= 1/2 x 0.12 = 0.06
Mass PbI₂ :
= 0.06 x 461,01 g/mol
= 27.6606 g
The answer is heterogeneous mixture please rate me breinliest