Pretty much, if I were going to separate small solid particles, I could use like a piece of paper. I used some type of piece of paper when I was trying to separate some particles during science.
Answer:
Coal is layered because it is a type of sedimentary rock
Explanation:
Answer:
The amount of energy released from the combustion of 2 moles of methae is 1,605.08 kJ/mol
Explanation:
The chemical reaction of the combustion of methane is given as follows;
CH₄ (g) + 2O₂ (g) → CO₂ (g) + 2H₂O (g)
Hence, 1 mole of methane combines with 2 moles of oxygen gas to form 1 mole of carbon dioxide and 2 moles of water vapor
Where:
CH₄ (g): Hf = -74.6 kJ/mol
CO₂ (g): Hf = -393.5 kJ/mol
H₂O (g): Hf = -241.82 kJ/mol
Therefore, the combustion of 1 mole of methane releases;
-393.5 kJ/mol × 1 + 241.82 kJ/mol × 2 + 74.6 kJ/mol = -802.54 kJ/mol
Hence the combustion of 2 moles of methae will rellease;
2 × -802.54 kJ/mol or 1,605.08 kJ/mol.
Answer:
72.3 c
Explanation:the celcuis would over power the fairnheight
<h3>
Answer:</h3>
9.6724 g MgO
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Stoichiometry</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 2Mg + O₂ → 2MgO
[Given] 5.8332 g Mg
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol Mg = 2 mol MgO
Molar Mass of Mg - 24.31 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of MgO - 24.31 + 16.00 = 40.31 g/mol
<u>Step 3: Stoichiometry</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 5 sig figs.</em>
9.67241 g MgO ≈ 9.6724 g MgO