1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Allushta [10]
3 years ago
9

An object of mass m is placed on Spring A, which is compressed by distance x. The spring is released and the velocity of the pus

hed object as it leaves the spring is measured. The experiment is repeated with the same object on Spring B, which is compressed by the same distance x. The object travels faster when pushed by Spring B. What can be concluded?
A .Spring A had a higher elastic potential energy than Spring B.
B. Spring A's spring constant is higher than Spring B's.
C. Spring A's spring constant is lower than Spring B's.
D. Spring A has more mass than Spring B.
Physics
1 answer:
ss7ja [257]3 years ago
3 0

Answer:

C

Explanation:

You might be interested in
Mrs. Smith can walk 1.4 m/s. If it takes her 8.5 seconds to get to the teacher lounge, how far is the teacher lounge from her ro
AlexFokin [52]

Answer:

6 meters away

Explanation:

6*1.4= 8.4 which is pretty close

5 0
3 years ago
An astronaut exploring a distant solar system lands on an unnamed planet with a radius of 2530 km. When the astronaut jumps upwa
Natali [406]

Answer:

1.38*10^18 kg

Explanation:

According to the Newton's law of universal gravitation:

F=G*\frac{m_a*m_p}{r^2}

where:

G= Gravitational constant (6.674×10−11 N · (m/kg)2)

ma= mass of the astronaut

mp= mass of the planet

F=m_a.a\\(v_f )^2=(v_o)^2+2.a.\Delta y\\\\a=\frac{(v_f)^2-(v_o)^2}{2.\Delta y}\\\\a=\frac{(0)^2-(4.29m/s)^2}{2.0.64m}=14.38m/s^2\\\\F=m_a*14.38m/s^2

so:

m_a*14.38m/s^2=(6.674*10^{-11}N.(m/kg)^2)*\frac{m_a.m_p}{(2.530*10^3m)^2}\\m_p=\frac{14.38m/s^2(2.530*10^3m)^2}{(6.674*10^{-11}N.(m/kg)^2)}\\\\m_p=1.38*10^{18}kg

7 0
3 years ago
What is the maximum speed when the conditions are mass =450 kg, initial height= 30 m, and the roller coaster is initially at res
Zarrin [17]

Answer:

B. 24.2 m/s

Explanation:

Given;

mass of the roller coaster, m = 450 kg

height of the roller coaster, h = 30 m

The maximum potential energy of the roller coaster  due to its height is given by;

P.E_{max} = mgh\\\\PE_{max} = 450 *9.8*30\\\\PE_{max} = 132,300 \ J

P.E_{max} = K.E_{max} \ (law \ of \ conservation\ of \ energy)

K.E_{max} = \frac{1}{2}mv_{max}^2\\\\ v_{max}^2 = \frac{2K.E_{max}}{m}\\\\ v_{max}^2 = \frac{2*132300}{450}\\\\ v_{max}^2 =588\\\\v_{max} = \sqrt{588}\\\\  v_{max} = 24.2 \ m/s

Therefore, the maximum speed of the roller coaster is 24.2 m/s.

3 0
3 years ago
At the surface of Jupiter's moon Io, the acceleration due to gravity is 1.81m/s2 . A watermelon has a weight of 58.0N at the sur
kvasek [131]

Answer: A) mass on earth surface = 5.91kg

B) mass on surface of jupiter = 5.91kg

C) weight on surface of jupiter = 10.697N

Explanation:

The relationship between weight (W), mass (m) and acceleration due gravity (g) is given below

W=mg

From the question, g= 9.8m/s² and weight on the surface on the earth is 58N

A) The mass of watermelon on earth is

m = 58/ 9.8 = 5.91kg

B) the mass of the watermelon on jupiter is 5.91kg.

You will notice this is the same as the mass of watermelon on earth and that is so because mass is a scalar quantity that does not depends on the distance away from the center of the earth (unlike weight which is a vector) thus making it constant all through any location.

C) mass of watermelon is 5.91kg, g=9.8m/s² weight of watermelon on jupiter is given below as

W = mg

W = 5.91 x 9.8

= 10.697N.

6 0
3 years ago
three condensers are connected in series across a 150 volt supply. The voltages across them are 40,50 and 60 volts respectively,
ioda

Explanation:

Given that,

The voltages across them are 40,50 and 60 volts respectively, and the charge on each condenser is 6×10⁻⁸ C.

(a) Capacitance of capacitor 1,

C_1=\dfrac{Q}{V_1}\\\\C_1=\dfrac{6\times 10^{-8}}{40}\\\\C_1=1.5\times 10^{-9}\ F\\\\C_1=1.5\ nF

Capacitance of capacitor 2,

C_2=\dfrac{Q}{V_2}\\\\C_2=\dfrac{6\times 10^{-8}}{50}\\\\C_2=1.2\times 10^{-9}\ F\\\\C_2=1.2\ nF

Capacitance of capacitor 3,

C_3=\dfrac{Q}{V_3}\\\\C_3=\dfrac{6\times 10^{-8}}{60}\\\\C_3=1\times 10^{-9}\ F\\\\C_3=1\ nF

(b) The equivalent capacitance in series combination is :

\dfrac{1}{C}=\dfrac{1}{C_1}+\dfrac{1}{C_2}+\dfrac{1}{C_3}\\\\\dfrac{1}{C}=\dfrac{1}{1.5}+\dfrac{1}{1.2}+\dfrac{1}{1}\\\\C=0.4\ nF

Hence, this is the required solution.

5 0
3 years ago
Other questions:
  • Garrick rubs an inflated balloon against his hair. He then touches the balloon against a non-conducting wall.
    14·1 answer
  • . The magnitudes of two forces are measured to be 120 ± 5 N and 60 ± 3 N. Find the sum
    6·1 answer
  • Which is a true statement about a series circuit?
    15·1 answer
  • If you know the distance an object has traveled in a certain amount of time you can determine
    12·2 answers
  • PLEASE HELP! AWARDING BRAINLIEST!
    6·2 answers
  • The law of universal gravitation
    5·1 answer
  • Should athletes be benched if their grades are too low, or should they be allowed to play anyway?
    7·1 answer
  • When the Earth is positioned between the Moon and the Sun the following are possible:
    15·1 answer
  • 3 track athletes run the 400 meter dash, Jackie 51 seconds and 1500 joules
    7·1 answer
  • Charge is given in microcoulombs. What must you multiply the charge by to use Coulomb's
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!