Answer:
Gravitational force
Explanation:
If two spheres have equal densities and they are subject only to their mutual gravitational attraction. We need to say that the quantities that must have the same magnitude for both spheres. So, the correct option is (E) i.e. gravitational force.
It is because of Newton's third law of motion. It states that the force due to object 1 to object 2 is same as force due to object 2 to object 1. The two forces act in opposite direction.
Hence, the correct option is (E) "Gravitational force".
Answer:
Jupiter
Explanation:
Since the mass of Jupiter is the greatest from the given choices, it will exert the most force on any object orbiting 100km above its surface.
This is compliance with the Newton's law of universal gravitation which states that "the force of attraction between two bodies is directly proportional to the magnitude of their masses and inversely proportional to the distances between them".
- Therefore, the more the masses of two bodies, the higher the gravitational attraction
- Since the distance is the same, the planet with the greater mass will exert the most force on the satellite.
Answer:
The astronaut can throw the hammer in a direction away from the space station. While he is holding the hammer, the total momentum of the astronaut and hammer is 0 kg • m/s. According to the law of conservation of momentum, the total momentum after he throws the hammer must still be 0 kg • m/s. In order for momentum to be conserved, the astronaut will have to move in the opposite direction of the hammer, which will be toward the space station.
Explanation:
The lists that arranges the Earth's compositional layers in order of increasing density is CRUST, MANTLE AND THEN CORE. The core is considered as the most dense and the lithosphere, which makes the outermost core, is considered as having the least density. Hope that this answer helps.
Answer:
Focal length, f = 0.43 meters
Explanation:
It is given that,
Power of the reading glasses, P = 2.3 D
We need to calculate the focal length of the reading glasses. The relationship between the power and the focal length inverse i.e.



f = 0.43 m
So, the focal length of the reading glasses found on the rack in a drugstore is 0.43 meters.