Answer:
Both A and B
Explanation:
The interaction of magnetic fields and armature results into a rotational force of the armature hence turning motion. It's important to note that you will always need two magnetic fields in order to experience the force since one magnetic field is at the rotating armature and another at the casing. Considering the arguments of these two technicians, both of them are correct in their arguments.
Explanation:
It is given that,
Velocity of the electron, 
Magnetic field, 
Charge of electron, 
(a) Let
is the force on the electron due to the magnetic field. The magnetic force acting on it is given by :

![F_e=1.6\times 10^{-19}\times [(2\times 10^6i+3\times 10^6j)\times (0.030i-0.15j)]](https://tex.z-dn.net/?f=F_e%3D1.6%5Ctimes%2010%5E%7B-19%7D%5Ctimes%20%5B%282%5Ctimes%2010%5E6i%2B3%5Ctimes%2010%5E6j%29%5Ctimes%20%280.030i-0.15j%29%5D)


(b) The charge of electron, 
The force acting on the proton is same as force on electron but in opposite direction i.e (-k). Hence, this is the required solution.
As long as they're both on the same planet, the greater mass always has the greater weight. In this question, Object-A has the greater mass, so it weighs more that Object-B does.
Answer:

Given:
Radius of curvature (R) of a spherical mirror = 20
To Find:
Focal length (f)
Explanation:
Formula:

Substituting value of R in the equation:



Answer:
Explanation:
We know that the volume V for a sphere of radius r is

If we got an uncertainty
the formula for the uncertainty of V is:

We can calculate this uncertainty, first we obtain the derivative:


And using it in the formula:



The relative uncertainty is:



Using the values for the problem:

This is, a percent uncertainty of 4.77 %