Temperature change, colour change, releasing gas, bubbles and change in odor
For this question, assume that you have 1 compound. This compound is divided in half once, so you are left with 0.5. That 0.5 that remains is divided in half again, this is the second half-life, and you are left with 0.25. The final half life involves dividing 0.25 in half, which means you are left with 0.125. For the answer to make sense, you need to know your conversions between decimals and fractions. To make it simple, if you have 0.125 and you times it by 8, you are left with your initial value of 1. Therefore, after three half-lives, you are left with 1/8th of the compound.
In nuclear physics and nuclear chemistry, nuclear fission is either a nuclear reaction or a radioactive decay process in which the nucleus of an atom splits<span> into smaller parts (lighter </span>nuclei<span>). Hope this helps</span>
<span>9.40x10^19 molecules.
The balanced equation for ammonia is:
N2 + 3H2 ==> 2NH3
So for every 3 moles of hydrogen gas, 2 moles of ammonia is produced. So let's calculate the molar mass of hydrogen and ammonia, starting with the respective atomic weights:
Atomic weight nitrogen = 14.0067
Atomic weight hydrogen = 1.00794
Molar mass H2 = 2 * 1.00794 = 2.01588 g/mol
Molar mass NH3 = 14.0067 + 3 * 1.00794 = 17.03052 g/mol
Moles H2 = 4.72 x 10^-4 g / 2.01588 g/mol = 2.34140921086573x10^-4 mol
Moles NH3 = 2.34140921086573x10^-4 mol * (2/3) = 1.56094x10^-4 mol
Now to convert from moles to molecules, just multiply by Avogadro's number:
1.56094x10^-4 * 6.0221409x10^23 = 9.400197448261x10^19
Rounding to 3 significant figures gives 9.40x10^19 molecules.</span>