Answer:
Acceleration = 2.35 m/
Speed = 8.67 m/s
Explanation:
The coefficient of friction , u =0.3
The angle of incline = 30°
The two forces acting on block are weight and friction.
weight along the incline = mg cos60° =
= 0.5 mg
Friction along incline = umg cos30° = mg 
Friction along incline = 0.26 mg
Net force acting on the weight = (0.5 - 0.26) mg = 0.24 mg
Acceleration =
= 0.24 g = 2.35 m/
The height of incline = 8 m
Length of the inclined edge = 16 m


v= 8.67 m/s
A battery-operated car moves forward as a result of which device?
A) Electromagnet
B) Generator
<u>C) Motor </u>
D) Transformer
Answer: acceleration due to gravity of planet a would be twice that of planet b. Given that the radius are thesame.
Explanation:
Acceleration due to gravity is as a result of the gravitational force of attraction of a planet to its centre.
g = GM/r^2
Where;
g = acceleration due to gravity
G = gravitational constant
M = mass of planet
r = radius of planet
Given that the two planet have the same radius, if the mass of planet a is twice the mass of planet b the the acceleration due to gravity of planet a would be twice that of planet b, because acceleration due to gravity is directly proportional to the mass of the planet.
Answer:

Explanation:
We are given that
Mass of glass,

Volume,
Mass of water=
Density of water=
Temperature of hot water,
Specific heat of glass,
Specific heat of water,







Answer:
1. The precession of the equinoxes.
2. Changes in the tilt angle of Earth’s rotational axis relative to the plane of Earth’s orbit around the Sun.
3. Variations in the eccentricity
Explanation:
These variations listed above; the precession of the equinoxes (refers, changes in the timing of the seasons of summer and winter), this occurs on a roughly about 26,000-year interval; changes in the tilt angle of Earth’s rotational axis relative to the plane of Earth’s orbit around the Sun, this occurs roughly in a 41,000-year interval; and changes in the eccentricity (that is a departure from a perfect circle) of Earth’s orbit around the Sun, occurring on a roughly 100,000-year timescale. which influences the mean annual solar radiation at the top of Earth’s atmosphere.