Answer:
Strong broad peak around 3200-3600 cm-1 should be present
Strong peak around around 1700 cm-1 should be absent
Explanation:
Infrared spectroscopy is an analytical technique which is used for molecular structure characterization by identifying the functional groups present in a given molecule based on the absorption wavelength (or wavenumber).
In an IR spectrum the carbonyl group is associated with the C=O stretch which occurs as a strong peak around around 1700 cm-1. For alcohol the -corresponding O-H stretching frequency occurs as a strong broad peak between 3200-3600 cm-1.
Therefore, in the case of estradiol the presence a strong broad peak in the 3200-3600 cm-1 and the absence of the peak at around 1700 cm-1. would suggest that the transformation is complete.
To compute for grams of fat in each salad:
We know that, A = C.
And B is 5 grams more, so it is B = 5 + A
And the total fat is 65, so A + B + C = 65 grams.
Computation:
A + (5 + A) + A = 65
3A + 5 = 65
3A = 60
A = 20
A = 20
B = (65 - 40) = 25
C = 20
Answer:
Explanation:
1) Given data:
Number of moles of lead = 4.3×10⁻³ mol
Mass of lead = ?
Solution:
Mass = number of moles × molar mass
Molar mass of lead = 207.2 g/mol
Mass = 4.3×10⁻³ mol × 207.2 g/mol
Mass = 890.96 g
2) Given data:
Number of atoms of antimony = 3.8×10²² atoms
Mass of antimony = ?
Solution:
1 mole contain 6.022 ×10²³ atoms
3.8×10²² atoms × 1 mol / 6.022 ×10²³ atoms
0.63×10⁻¹ mol
0.063 mol
Mass = number of moles × molar mass
Molar mass of lead = 121.76 g/mol
Mass = 0.063 mol × 121.76 g/mol
Mass = 7.67 g
3) Given data:
Mass of tungsten = 15.5 Kg (15.5 kg × 1000 g/ 1kg = 15500 g)
Number of atoms = ?
Solution:
Number of moles of tungsten:
Number of moles = mass/molar mass
Number of moles = 15500 g / 183.84 g/mol
Number of moles = 84.3 mol
1 mole contain 6.022 ×10²³ atoms
84.3 mol × 6.022 ×10²³ atoms / 1mol
507.65 ×10²³ atoms
Answer:
Nothing.
Step-by-step explanation:
Both Al(OH)₃ and CaSO₄ are insoluble in water, so their ions cannot come into contact and react.
Answer:
One of the most important uses for fingerprints is to help investigators link one crime scene to another involving the same person. Fingerprint identification also helps investigators to track a criminal's record, their previous arrests and convictions, to aid in sentencing, probation, parole and pardoning decisions.
Explanation: