Answer:
a) The lewis dot structure is shown in the image attached to this answer
b) The formal charge on each of the atoms is zero
c) bromine has an oxidation state of +5 while fluorine has an oxidation state of -1
d) 90 degrees
e) Square Pyramidal
f) polar bonds
g) polar molecule
Explanation:
The molecule BrF5 has a formal charge of zero. It exhibits an sp3d2 hybridization state with a square pyramidal geometry. The bond angle in the molecule is 90 degrees. It is a molecule of the type AX5E. The oxidation state of bromine is +5 while that of fluorine is -1.
The Br-F bonds are polar. The overall molecule is polar due to asymmetric charge distribution concentrating on the central atom since the molecule is square pyramidal.
Answer:
52.2 g
Explanation:
Step 1: Write the balanced equation
3 KOH + H₃PO₄ ⟶ K₃PO₄ + 3 H₂O
Step 2: Calculate the moles corresponding to 89.7 g of KOH
The molar mass of KOH is 56.11 g/mol.
89.7 g × 1 mol/56.11 g = 1.60 mol
Step 3: Calculate the moles of H₃PO₄ needed to react with 1.60 moles of KOH
The molar ratio of KOH to H₃PO₄ is 3:1. The moles of H₃PO₄ needed are 1/3 × 1.60 mol = 0.533 mol.
Step 4: Calculate the mass corresponding to 0.533 moles of H₃PO₄
The molar mass of H₃PO₄ is 97.99 g/mol.
0.533 mol × 97.99 g/mol = 52.2 g
Well I don’t know how you can “bake” a desert but if you can, try to not mix up the sugar and sand
Answer:
G - H2SO4
Explanation:
two hydrogen atoms and 4 oxygen atoms
Answer:
1.03M
Explanation:
mass/molar mass = moles of solution
50 g / (80+1) = 0.617 mol HBr
molarity*volume = moles
M*0.600 L = 0.617 mol
M = 0.617/0.600 = 1.03 M