Answer:
The new volume will be 42, 7 L.
Explanation:
We use the gas formula, which results from the combination of the Boyle, Charles and Gay-Lussac laws. According to which at a constant mass, temperature, pressure and volume vary, keeping constant PV / T. The conditions STP are: 1 atm of pressure and 273 K of temperature.
P1xV1/T1 =P2xV2/T2
1 atmx 22,4 L/273K = 0,5atmx V2/260K
V2=((1 atmx 22,4 L/273K )x 260K)/0,5 atm= 42, 67L
Answer:
Reduction
Explanation:
Reduction:
Reduction involve the gain of electron and oxidation number is decreased.
Mn⁺⁷ +3e⁻ → Mn⁴⁺
Mn gets three electrons , its oxidation state reduced from +7 to +4 so Mn gets reduced.
Examples:
Consider the following reactions.
4KI + 2CuCl₂ → 2CuI + I₂ + 4KCl
the oxidation state of copper is changed from +2 to +1 so copper get reduced.
CO + H₂O → CO₂ + H₂
the oxidation state of carbon is +2 on reactant side and on product side it becomes +4 so carbon get oxidized.
H₂S + 2NaOH → Na₂S + 2H₂O
The oxidation sate of sulfur is -2 on reactant side and in product side it is also -2 so it neither oxidized nor reduced.
Answer:
stay the same.
Explanation: Period 3 consists of the full 1s, 2s, and 2p electron orbitals, plus the 3s and 3p valence orbitals, which are filled with a total of 8 more electrons as we move from left (Na) to the far right (Ar):
Na: 1s2 2s2 2p6 3s1
Ar: s2 2s2 2p6 3s2 3p6
As we move from left to right, and ignoring the already-filled 1s, 2s, and 2p orbitals, the period three starting and ending elements have the following:
Na: 3s1
Ar: 3s2, 3p6
All the new electrons electrons filled the third energy level (3s and 3p). So the energy level does not change, just the orbitals.
Answer:
5.46 8 x 10²³ molecules.
Explanation:
- <em>Knowing that every one mole of a substance contains Avogadro's no. of molecules (NA = 6.022 x 10²³).</em>
<em><u>Using cross multiplication:</u></em>
1.0 mole → 6.022 x 10²³ molecules.
9.08 x 10⁻¹ mole → ??? molecules.
∴ The no. of molecules of CO₂ are in 9.08 x 10⁻¹ mol = (6.022 x 10²³ molecules) ( 9.08 x 10⁻¹ mole) / (1.0 mol) = 5.46 8 x 10²³ molecules.