The magnetic field strength of a very long current-carrying wire is proportional to the inverse of the distance from the wire. The farther you go from the wire, the weaker the magnetic field becomes.
B ∝ 1/d
B = magnetic field strength, d = distance from wire
Calculate the scaling factor for d required to change B from 25μT to 2.8μT:
2.8μT/25μT = 1/k
k = 8.9
You must go to a distance of 8.9d to observe a magnetic field strength of 2.8μT
Answer:
Explanation:the atom consists of a tiny nucleus at its center which is surrounded by a moving electrons. The nucleus contains a positively charged proton equal in size with the negatively charged electrons . The nucleus also may contain neutrons which have the same mass with the protons but no charge is neutral.
The attractive force between all matter in the universe is gravity.
In an exothermic reaction, there is a transfer of energy to the surroundings in the form of heat energy. The surroundings of the reaction will experience an increase in temperature. Many types of chemical reactions are exothermic, including combustion reactions, respiration & neutralization reactions of bases & acids.
Choices A, B, and D are false statements.
I think choice-C is trying to say the right thing, but it
might have gotten copied incorrectly.
Electric fields and electric forces both increase as the distance
decreases, and decrease as the distance increases.