Answer:
1. Main sequence stars have different masses. The common characteristic they have is their source of energy. They burn fuel in their core through the process of fusing hydrogen atoms into helium.
2. Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram with absolute visual magnitudes between about −3 and −8. The temperature range of supergiant stars spans from about 3,400 K to over 20,000 K.
3. Supergiants develop when massive main-sequence stars run out of hydrogen in their cores.
4. a supernova occur When the pressure drops low enough in a massive star, gravity suddenly takes over and the star collapses in just seconds. This collapse produces the explosion.
5. when a star has reached the end of its life and explodes in a brilliant burst of light
Explanation:
Answer 1) When a strong acid like

reacts with

usually the equilibrium shifts to the right because
As per the Le chatelier's principle "if in any reaction, a dynamic equilibrium is disturbed by changing the any of the conditions, the position of equilibrium moves to counteract the change." So, in the given reaction when

reacts with

it generates carbon dioxide and water as a by product, if we are adding

it will remove some of the

molecule from the reaction mixture, which then tends to shift the equilibrium towards right.
Answer 2) The same would be observed in this case, if we replace

with HCl it will shift the equilibrium to the right as their will be generation of AgCl as the precipitate.
As per the definition of Le Chatelier's principle if we add reactants in the reaction the equilibrium will tend to move towards right, also if we replace the products or remove it then too it will shift the equilibrium towards right. So, in this reaction you are removing

and

ions from the solution.
They do not show the same season. one is faced a different part of the sun
Aqua regia is an oxidative mixture that is highly corrosive and is composed of hydrochloric acid and nitric acid. The Ea (rev) for the reaction is 3 kJ.
<h3>What is activation energy?</h3>
The activation energy is the minimum required energy by the reactant to undergo changes to form the product. The activation energy of the reverse reaction is given by the difference in the production state and transition state.
It is given as,
Ea (rev) = Ea (fwd) − ΔHrxn
Given,
ΔH° = 83KJ
Ea (fwd) = 86 kJ/mol
Substituting the values above as:
Ea (rev) = 86 - 83
= 3 kJ
Therefore, the activation energy of the reverse reaction is 3 kJ.
Learn more about activation energy, here:
brainly.com/question/14287952
#SPJ4