1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RoseWind [281]
3 years ago
7

Balanced equations account for the conservation of mass.

Physics
2 answers:
marusya05 [52]3 years ago
7 0

Answer:

True

Explanation:

A balanced equation demonstrates the conservation of mass by having the same number of each type of atom on both sides of the arrow

uranmaximum [27]3 years ago
6 0

Answer:

fff

Explanation:

f

You might be interested in
What kind of energy does a skier have standing still at the top of a hill?
Len [333]
The skier has potential because potential energy is enery that is stored or an object that is or does not move
4 0
3 years ago
Choose the correct word from the drop-down menu to complete each sentence.
ra1l [238]

Answer:

- Peat soil

- Loamy soil

- Clay soil

Explanation:

Peat soil is dark, highly decomposed organic matter found in soil.

Loamy soil is a mixture of materials that holds moisture and drains well and also contains coarse grains and allows water to drain quickly.

Clay soil contains medium grains and retains water. Also it contains fine grains and has little space for water.

4 0
3 years ago
Read 2 more answers
A particle of mass m collides with a second particle of mass m. Before the collision, the first particle is moving in the x-dire
oee [108]

Answer:

a) v, v

b) 2mv^2

c) Elastic collion

Explanation:

(a) The velocity of the second particle after the collision is (v2x,v2y)=(v,−v).  From momentum conservation in x-direction

Here x, y represent direction.They are not variable. 1 and 2 represent before and after.

2vm=v1xm+v2xm, we find v1x=v.

From momentum conservation in y-direction

0 =v1ym+v2ym, we findv1y=v.

(b) By energy conservation principle

Before: K=1/2m(2v)^2=2mv^2.

After: K=1/2m(v^2(1x)+v^2(1y))+12m(v22x+v22y)=2mv^2

(c) The collision is elastic

6 0
3 years ago
A loaded 375 kg toboggan is traveling on smooth horizontal snow at 4.50 m/s when it suddenly comes to a rough region. The region
zmey [24]

Answer:

a) The average friction force exerted on the toboggan is 653.125 newtons, b) The rough region reduced the kinetic energy of the toboggan in 92.889 %, c) The speed of the toboggan is reduced in 73.333 %.

Explanation:

a) Given the existence of non-conservative forces (friction between toboggan and ground), the motion must be modelled by means of the Principle of Energy Conservation and the Work-Energy Theorem, since toboggan decrease its speed (associated with  due to the action of friction. Changes in gravitational potential energy can be neglected due to the inclination of the ground. Then:

K_{1} = K_{2} + W_{f}

Where:

K_{1}, K_{2} are the initial and final translational kinetic energies of the tobbogan, measured in joules.

W_{f} - Dissipated work due to friction, measured in joules.

By applying definitions of translation kinetic energy and work, the expression described above is now expanded and simplified:

f\cdot \Delta s = \frac{1}{2}\cdot m \cdot (v_{1}^{2}-v_{2}^{2})

Where:

f - Friction force, measured in newtons.

\Delta s - Distance travelled by the toboggan in the rough region, measured in meters.

m - Mass of the toboggan, measured in kilograms.

v_{1}, v_{2} - Initial and final speed of the toboggan, measured in meters per second.

The friction force is cleared:

f = \frac{m\cdot (v_{1}^{2}-v_{2}^{2})}{2\cdot \Delta s}

If m = 375\,kg, v_{1} = 4.50\,\frac{m}{s}, v_{2} = 1.20\,\frac{m}{s} and \Delta s = 5.40 \,m, then:

f = \frac{(375\,kg)\cdot \left[\left(4.50\,\frac{m}{s} \right)^{2}-\left(1.20\,\frac{m}{s}\right)^{2}\right]}{2\cdot (5.40\,m)}

f = 653.125\,N

The average friction force exerted on the toboggan is 653.125 newtons.

b) The percentage lost by the kinetic energy of the tobbogan due to friction is given by the following expression, which is expanded and simplified afterwards:

\% K_{loss} = \frac{K_{1}-K_{2}}{K_{1}}\times 100\,\%

\% K_{loss} = \left(1-\frac{K_{2}}{K_{1}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{\frac{1}{2}\cdot m \cdot v_{2}^{2}}{\frac{1}{2}\cdot m \cdot v_{1}^{2}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{v_{2}^{2}}{v_{1}^{2}} \right)\times 100\,\%

\%K_{loss} = \left[1-\left(\frac{v_{2}}{v_{1}}\right)^{2} \right]\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\%K_{loss} = \left[1-\left(\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} }\right)^{2} \right]\times 100\,\%

\%K_{loss} = 92.889\,\%

The rough region reduced the kinetic energy of the toboggan in 92.889 %.

c) The percentage lost by the speed of the tobbogan due to friction is given by the following expression:

\% v_{loss} = \frac{v_{1}-v_{2}}{v_{1}}\times 100\,\%

\% v_{loss} = \left(1-\frac{v_{2}}{v_{1}} \right)\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\% v_{loss} = \left(1-\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} } \right)\times 100\,\%

\%v_{loss} = 73.333\,\%

The speed of the toboggan is reduced in 73.333 %.

5 0
3 years ago
A proton moves through a magnetic field at 20.3 % of the speed of light. At a location where the field has a magnitude of 0.0062
galina1969 [7]

Answer:

Force on the proton will be .73\times 10^{-14}N

Explanation:

We have given speed of proton is 20.3% of speed of light

Speed of light c=3\times 10^8m/sec

So speed of proton v=\frac{3\times 10^8\times 23}{100}=6.9\times 10^7m/sec

Magnetic field B = 0.00629 T

Charge on proton q=1.6\times 10^{-16}C

Angle between velocity and magnetic field \Theta =137^{\circ}

Force on the proton is equal to F=qvBsin\Theta =1.6\times 10^{-19}\times 6.9\times 10^7\times 0.00629\times sin(137^{\circ})=4.73\times 10^{-14}N

4 0
3 years ago
Other questions:
  • A parachutist bails out and freely falls 50 m. Then the parachute opens, and thereafter she deceler- ates at 2.0 m/s2. She reach
    11·1 answer
  • In which year was the first Badminton game played in the Olympics
    10·2 answers
  • Achilles and the tortoise are having a race. The tortoise can run 1 mile (or whatever the Hellenic equivalent of this would be)
    11·1 answer
  • La velocidad de la luz en el vacío es c= 3000.000 km\s la luz del sol tarda en llegar a la tierra 8 minutos y 14 segundos
    14·1 answer
  • QUESTION 6
    10·2 answers
  • A ball that rolls on the ground is initially propelled with a speed of 45 km / h and after 10 seconds it stops. Assuming you los
    10·1 answer
  • EXPLAIN HOW ENERGY IS TRANSMITTED THROUGH A MEDIUM
    5·2 answers
  • Jose gets up from his seat on the bus to move closer to the front. Just as he begins to walk forward, the bus stops at a light.
    5·2 answers
  • He diagram shows a person holding a bow and arrow.
    8·2 answers
  • Newton’s law of gravity says the gravitational force between two objects is proportional to:
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!