Given:
Rectangular coordinate = (8, 6)
To convert:
Rectangular coordinate to polar coordinate with r > 0 and 0 ≤ θ < 2π.
Solution:
Let us find r:



r = 10
Now, find θ:


Cancel the common factor 2.


θ = 36.87°
The polar coordinates are (r, θ) = (10, 36.87°).
H= -1
Distribute:
-(4+h)= -4 - h
-4 - h= 3h
-4 +h = 3h + h
-4= 4h
-1 = h
Answer:
Step-by-step explanation:
Answer:
a. 0.4
b. 0.6
c. 0.6493
Step-by-step explanation:
p(checking work email) = p(A) = 0.40
p(staying connected with cell phone) = p(B) = 0.30
p(having laptop) = p(c) = 0.35
p(checking work mail and staying connected with cell phone) = p(AnB) = 0.16
p(neither A,B or C) = p(AuBuC)
= 1-42.8%
= 0.572
p(A|C) = 88% = 0.88
p(C|B) = 70% = 0.7
a. What is the probability that a randomly selected traveler who checks work email also uses a cell phone to stay connected?
p(B|A) = p(AnB)/p(A)
= 0.16/0.4
= 0.4
b. What is the probability that someone who brings a laptop on vacation also uses a cell phone to stay connected?
p(B|C) = P(C|B)p(B)/p(C)
= 0.7x0.3/0.35
= 0.6
c. If the randomly selected traveler checked work email and brought a laptop, what is the probability that he/she uses a cell phone to stay connected?
p(A|BnC)
= P(BnAnC)/p(AnC)
= p(AnC) = p(A|C).p(C)
= 0.88x0.35
= 0.308
p(AnBnC) = p(AuBuC)-p(a)-p(b)+ p(AnB)+p(AnC)+p(BnC)
p(BnC) = 0.7x0.3
= 0.21
p(AnBnC) = 0.572-0.4-0.3-0.35+0.16+0.308+0.21
= 0.2
p(A|BnC) = 0.2/0.308
= 0.6493