Answer:
Where the products are H2O and Ba(NO3)2
Explanation:
A base, as, barium hydroxide (Ba(OH)2) reacts with an acid (HNO3), producing water (H2O), and the related salt (Ba(NO3)2) in a reaction called <em>neutralization reaction.</em>
The balanced reaction is:
Ba(OH)2 + 2 HNO3 → 2 H2O + Ba(NO3)2
<em>Where the products are H2O and Ba(NO3)2</em>
Answer:
Highest boiling point - 0.43 m Urea
Second highest boiling point - 0.20 m NiSO4
Third highest boiling point - 0.19 m NH4I
Lowest boiling point - 0.17 m NH4NO3
Explanation:
We know that;
ΔT = kb m i
Where;
ΔT = boiling point elevation
kb = boiling point constant
m = molality of the solution
i = Van't Hoff factor
For NiSO4 , NH4I and NH4NO3 , the Van't Hoff factor, i = 2
But for Urea, the Van't Hoff factor, i = 1
We also have to consider both the values of the molality and Van't Hoff factor , knowing that a higher molality and a higher Van't Hoff factor leads to a higher ΔT and consequently a higher boiling point.
This facts above account for the arrangement of substances shown in the answer.
Yes due to the radioactivity having nothing to do with the chemical equation given it will release radiation at a rate determined by it's half life.
Answer:
The answer is either geosphere, hydrosphere, atmosphere, cryosphere, or biosphere. Its not the answer but its a hint. Please follow
We determine the Coulombic force using the Coulomb's Law:
F = kQ₁Q₂/d²
where
k is equal to 9×10⁹ N·m²/C²
Q₁ and Q₂ are the charges of the two particles
d is the distance between them
For this problem, Q₁ = +2(0.16×10⁻¹⁸ C) and Q₂ = -2(0.16×10⁻¹⁸ C), because a single electron or proton has a charge of 0.16×10⁻¹⁸ C. The distance between the two ions is the sum of their radii.
d = radius of Ca²⁺ + radius of O²⁻
d = 0.106×10⁻⁹ m + 0.132×10⁻⁹ m
d = 0.238×10⁻⁹ m
F = (9×10⁹ N·m²/C²)(+2(0.16×10⁻¹⁸ C))(-2(0.16×10⁻¹⁸ C))/(0.238×10⁻⁹ m)²
F = 1.017×10¹¹ N