Answer:
Pb oxidation number is +2
C in CH4 is -4. H is +1. 4H + 1C = 0. ; 4(+1) + C = 0 ; C = -4
O is usually -2. 3O = 3(-2) = -6. ; 2Fe =. +6 ; each Fe is +3
2Ag = +2 since O = -2 ; each Ag = +1
Answer:
Explanation:
Explanation:
As you know, the empirical formula tells you what the smallest whole number ratio that exists between the atoms that make up a compound is.
In your case, you know that the empirical formula is
NH Cl
2
, which means that the regardles of how many atoms of each element you get in the actual compound, the ratio that exists between them will always be
1:2:1.
What you actually need to determine is how many empirical formulas are needed to get to the molecular formula.
Notice that the problem provides you with the molar mass of the compound. This means that you can use the molar mass of the empirical formula to determine exactly how many atoms you need to form the compound's molecule.
molar mass empirical formula×n=molar mass compound
To get the molar mass of the empirical formula, use the molar masses of its constituent atoms
14.0067 g/mol+2×1.00794 g/mol+35.453 g/mol=51.48 g/mol≈
51.5 g/mol
This means that you have
51.5g/mol×n=51.5g/mol
As you can see, you have
n=1.
This means that the empirical formula and the molecular formula are equivalent,
NH Cl.
2
Answer:
9L
Explanation:
Given parameters:
Initial volume V₁ = 3.6L
Initial pressure P₁ = 2.5atm
Final pressure P₂ = 1atm
Unknown:
Final volume V₂ = ?
Condition: constant temperature = 25°C
Solution:
This problem compares the volume and pressure of a gas at constant temperature.
This is highly synonymous to the postulate of Boyle's law. It states that "the volume of a fixed mass of gas is inversely proportional to the pressure provided that temperature is constant".
Mathematically;
P₁V₁ = P₂V₂
where P and V are pressure and volume
1 and 2 are initial and final states
Input the parameters and solve for V₂;
2.5 x 3.6 = 1 x V₂
V₂ = 9L