Answer:
Weaker
Explanation:
Since the charges on nucleus and electron are opposite in nature, an attractive force exists between them. It is true in generally, that when objects are made to move closer together in the direction of an attractive force, potential energy decreases (and increases whenever attracting objects are force to move apart).
<u>Answer:</u> The net ionic equation contains
ions
<u>Explanation:</u>
Net ionic equation of any reaction does not include any spectator ions.
Spectator ions are defined as the ions which does not get involved in a chemical equation. They are found on both the sides of the chemical reaction when it is present in ionic form.
The chemical equation for the reaction of ammonium sulfate and calcium nitrate is given as:

Ionic form of the above equation follows:

As, ammonia and nitrate ions are present on both the sides of the reaction. Thus, it will not be present in the net ionic equation and are spectator ions.
The net ionic equation for the above reaction follows:

Hence, the net ionic equation contains
ions
Answer:
Upper cuticle and guard cells
Answer:
The strongest gravitational attraction between the two objects will be experienced when the distance between the two objects is smallest.
Explanation:
According to Newton's law of universal gravitation, the force of attraction between two objects is proportional to the products of their masses and inversely proportional to the square of the distance of separation between the two objects. This attraction between objects is known as gravity and it applies to all objects in the universe.
From the law of universal gravitation, since their is an inverse square relationship between gravitational force and the distance of separation between two interacting objects, an increase in the distance of separation will result in weaker gravitational forces. For example, if the distance of separation between two objects is increased by a factor of 2, then the force of gravitational attraction is decreased by a factor of 4 (since 2² = 4). However, if the distance of separation between the two objects is decreased by a factor of two, i.e. is halved, then the force of gravitational attraction is increased by a factor of 4.
Thus, the strongest gravitational attraction between the two objects will be experienced when the distance between the two objects is smallest.
The answer would be About 3.857yd3