Answer:
Reversible reactions exhibit the same reaction rate for forward and reverse reactions at equilibrium.
Reversible reactions exhibit constant concentrations of reactants and products at equilibrium
Explanation:
A reversible reaction is a reaction that can proceed in both forward and backward direction.
Equilibrium is attained in a chemical system when there is no observable change in the properties of the system.
At equilibrium, a reversible reaction is occurring in at same rate. That is, the forward and backward reaction is occurring at the same rate. As the rate of the forward and backward reaction remains the same, the concentrations of the reactants and products will also be the same in order for the equilibrium to be maintained.
Answer:
See explanation and images attached
Explanation:
a) In the mechanism for the acid catalysed esterification of propanoic acid using ethanol, we can see that the first step is the protonation of the acid followed by nucleophillic attack of the alcohol. Loss of water and consequent deprotonation regenerates the acid catalyst. We can see the fate of the 18O labelled ethanol in the mechanism shown.
b) In the second mechanism, an unnamed ester is hydrolysed using an acid catalyst. The attack of the acid and subsequent nucleophillic attack of water labelled with 18O leads to the incorporation of this 18O into the product acid as shown in the mechanism attached to this answer.
<u>Answer:</u> The mass of iron (II) oxide that must be used in the reaction is 30.37
<u>Explanation:</u>
The given chemical reaction follows:

By Stoichiometry of the reaction:
When 635 kJ of energy is released, 6 moles of iron (II) oxide is reacted.
So, when 44.7 kJ of energy is released,
of iron (II) oxide is reacted.
Now, calculating the mass of iron (II) oxide by using the equation:

Moles of iron (II) oxide = 0.423 moles
Molar mass of iron (II) oxide = 71.8 g/mol
Putting values in above equation, we get:

Hence, the mass of iron (II) oxide that must be used in the reaction is 30.37