The condensed structural formula of the product of the reaction of 2,7-dimethyl-4-octene with hydrogen and metal catalyst.
Ch3 CH(CH3) CH2 CH2 CH2 CH2 CH(CH3) CH3
Equation is as follows
CH3 CH(CH3) CH2 C=C CH2 CH(CH3) CH3 + H2→
CH3 CH(CH3)CH2 CH2 CH2 CH2 CH(CH3) CH3
metal catalyst example is nickel and the name of structure formed is
2,7- dimethyl octane
Answer:
0.01M = [H⁺]; 1x10⁻¹²M = [OH⁻]; Ratio is: 1x10¹⁰
Explanation:
pH is defined as -log [H⁺]
For a pH of 2 we can solve [H⁺] as follows:
pH = -log [H⁺]
2 = -log [H⁺]
10^-2 = [H⁺]
<h3>0.01M = [H⁺]</h3>
Using Keq of water:
Keq = 1x10⁻¹⁴ = [H⁺] [OH⁻]
1x10⁻¹⁴ / 0.01M = [OH⁻]
<h3>1x10⁻¹²M = [OH⁻]</h3><h3 />
The ratio is:
[H⁺] / [OH⁻] = 0.01 / 1x10⁻¹² =
<h3>1x10¹⁰</h3>
Answer:
Answer is explained in the explanation section below.
Explanation:
Note: This question is not complete and lacks necessary data to solve. However, I have found a similar question and I will be using its data to solve this question for the sake of understanding and concept.
Solution:
Equilibrium Reaction:
CaO(s) + H2O(g) -->Ca(OH)2(s)
We need to find the reaction quotient for this question:
Q =
Here, only the pressure of the gaseous reactant will be used and here H20 is the only reactant which is gaseous.
And we are given that, vapor pressure of water is = 0.106 mmHg
So,
Now, we need to convert it into atm
so, 1atm = 760 mmHg
0.106 mmHg = 0.106/760 atm
0.106 mmHg = 1.394 x
atm
Plugging in the values in the equation, we get:
Q =
Q = 
Q = 7173.60 
Answer:
Fossil fuels
Explanation:
Fossil fuels — natural gas, coal, and petroleum, and — provide most (63 %) of the energy consumed in the United States
The breakdown in 2019 was
Natural gas 38 %
Coal 24 %
Petroleum 1 %
Answer:
Explanation:
Here is an illustration showing how to "calculate" +5 as the effective nuclear charge (Zeff) for phosphorus. We are not implying that the electrons are in orbits here, this is simply showing inner shell electrons that shield the outer valence electrons from the full nuclear charge.