The acceleration of the car will be needed in order to calculate the time. It is important to consider that the final speed is equal to zero:

We can clear time in the speed equation:

If you find some mistake in my English, please tell me know.
Answer:
10s
Explanation:
If it took Beatrice 25 seconds to complete the race
Distance = 100 meter
Beatrice speed = 100/25
= 4m/s
If Alice runs at a constant speed and crosses the finish line $5$ seconds, she must have completed the race in 20s (25 -5).
Her speed where constant
= 100/20
= 5 m/s
It would take Alice
= 50/5
= 10s
It would take Alice 10s to run $50$ meters.
I remember c/d. That's not a problem. But if you want 'c', you'll have to give me 'd'.
Answer:
I_weight = M L²
this value is much larger and with it it is easier to restore balance.I
Explanation:
When man walks a tightrope, he carries a linear velocity, this velocity is related to the angular velocity by
v = w r
For man to maintain equilibrium needs the total moment to be zero
∑τ = I α
S τ = 0
The forces on the home are the weight of the masses, the weight of the man and the support on the rope, the latter two are zero taque the distance to the center of rotation is zero.
Therefore the moment of the masses and the open is the one that must be zero.
If the man carries only the bar, we could approximate it by two open one on each side of the axis of rotation formed by the free of the rope
I = ⅓ m L² / 4
As the length of half the length of the bar and the mass of the bar is small, this moment is small, therefore at the moment if there is some imbalance it is difficult to recover.
If, in addition to the opening, each of them carries a specific weight, the moment of inertia of this weight is
I_weight = M L²
this value is much larger and with it it is easier to restore balance.
It's either 3 or 4 I know this becuase I have read a book about electricity