Answer: 41.46 L
Explanation:
La ecuación que describe relación entre presión, volumen, temperatura y la cantidad (en moles)
de un gas ideal es:
PV = nRT
Donde: P = Presión absoluta
, V= Volumen , n = Moles de gas
, R = Constante universal de los gases ideales, T = Temperatura absoluta,
R = 0.082 L. atm/mol. °K
V = nRT/P
Calculanting n
n = mass/ molecular mass
<h3>n = 4 g / 2g. mol⁻¹</h3><h3>n = 2 mol</h3><h3>T =25⁰ + 273 ⁰K = 298 ⁰K</h3><h3>V = (2 mol ₓ0.082 L. atm / mol.°K x 298 ⁰K) / 1.18 atm = 41.46 L</h3>
Answer:
Explanation:
S orbital has a spherical shape
P orbital has a dumb-bell shape
d orbital has a double dumb-bell shape
Answer:
2,3-dimethyl-2-butene > 3-methyl-3-hexene > cis-3-hexene > 1-hexene
Explanation:
According to Saytzeff rule, the more highly substituted an alkene is, the more stable it is. Since this is so, 2,3-dimethyl-2-butene will be the most stable of all the alkenes listed because it is the most substituted alkene.
Let us also note that terminal alkenes are the least stable because the pi bonds of the alkenes are least stabilized by alkyl groups. This implies that 1-hexene is the least stable alkene among the listed alkenes.