Consider velocity to the right as positive.
First mass:
m₁ = 4.0 kg
v₁ = 2.0 m/s to the right
Second mass:
m₂ = 8.0 kg
v₂ = -3.0 m/s to the left
Total momentum of the system is
P = m₁v₁ + m₂v₂
= 4*2 + 8*(-3)
= -16 (kg-m)/s
Let v (m/s) be the velocity of the center of mass of the 2-block system.
Because momentum of the system is preserved, therefore
(m₁+m₂)v= -16
(4+8 kg)*(v m/s) = -16 (kg-m)/s
v = -1.333 m/s
Answer:
The center of mass is moving at 1.33 m/s to the left.
Answer:
1. False
2. Fats
3. False
Explanation:
MyPlate is an initiative from the United States Department of Agriculture that is designed to help Americans improve their eating habits throughout their lifetimes. Every meal matters. The five food groups represented in My Plate include vegetables, grain, dairy, protein foods, and fruits.
Calories are a source of energy for the human body. So, the more active a person is, the more energy he would need to be supplied to him in form of calories. The less active a person is, the fewer calories he would need.
<span>1. No energy is gained or lost when molecules collide.
2. The molecules in a gas take up a negligible (able to be ignored) amount of space in relation to the container they occupy.
3. The molecules are in constant, linear motion.</span>
When they meet the 40-kg boy would have moved a distance of 6 m.
<h3>Distance moved by the 40 kg boy</h3>
Apply the principle of center mass;
Take the 40 kg mass as the reference point;
X(40 kg) = (40kg x 0 + 60kg x 10 m)/(40 kg + 60 kg)
X(40 kg) = (600)/(100)
X(40 kg) = 6 m
Thus, when they meet the 40-kg boy would have moved a distance of 6 m.
Learn more about distance here: brainly.com/question/2854969
#SPJ1