Answer:
Covalent solids, also called network solids, are solids that are held together by covalent bonds. As such, they need localized electrons (shared between the atoms) and therefore the atoms are arranged in fixed geometries. Distortion far from this geometry can only occur through a breaking of covalent sigma bonds.
Pls help i need one more brainly to rank up. And have a great day :D
Sucrose, a sweet, white crystalline substance, C12 H22 O11, OBTAINED CHIEFLY FROM THE JUICE OF THE SUGAR CANE AND SUGAR BEET, BUT ALSO PRESENT IN SORGHUM, THE sugar maple, some palms, and various other plants, and having extensive nutritional, pharmaceutical, and industrial uses; any of the class of carbohydrates to which this substance belongs, as glucose, levulose, and lactose.
hlo guys you are so bads i
<u>Answer:</u> The equilibrium concentration of
is 0.332 M
<u>Explanation:</u>
We are given:
Initial concentration of
= 2.00 M
The given chemical equation follows:

<u>Initial:</u> 2.00
<u>At eqllm:</u> 2.00-2x x x
The expression of
for above equation follows:
![K_c=\frac{[CO_2][CF_4]}{[COF_2]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCO_2%5D%5BCF_4%5D%7D%7B%5BCOF_2%5D%5E2%7D)
We are given:

Putting values in above expression, we get:

Neglecting the value of x = 1.25 because equilibrium concentration of the reactant will becomes negative, which is not possible
So, equilibrium concentration of ![COF_2=(2.00-2x)=[2.00-(2\times 0.834)]=0.332M](https://tex.z-dn.net/?f=COF_2%3D%282.00-2x%29%3D%5B2.00-%282%5Ctimes%200.834%29%5D%3D0.332M)
Hence, the equilibrium concentration of
is 0.332 M
Answer:
17.09g/L
Explanation:
Density = total mass of elements/ volume
We need to find the mass of each mixture constituents using their molar mass:
mole = mass/molar mass
For Neon (Ne) which contains 0.650mol;
0.650 = mass/20.18
mass = 0.650 × 20.18
mass = 13.12g
For Krypton (Kr) which contains 0.321mol;
0.321 = mass/83.79
mass = 0.321 × 83.79
mass = 26.89g
For Xenon (Xe) which contains 0.190mol;
0.190 = mass/131.3
mass = 0.190 × 131.3
mass = 24.95g
Total mass = 13.12g + 26.89g + 24.95g = 64.96g
Density = total mass / volume
Density = 64.96g / 3.80L
Density of the mixture = 17.09g/L